Skip to main content
Log in

Effect of Sleeve Gastrectomy on Plasma Thioredoxin-Interacting Protein (TXNIP)

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Purpose

The mechanism in which bariatric surgery induces diabetes remission is still poorly understood. This study proposes Thioredoxin-interacting protein (TXNIP) as a possible factor for the anti-diabetic mechanism after sleeve gastrectomy (SG).

Materials and Methods

Plasma TXNIP level in obesity patients with diabetes (T2D, N = 20), obesity patients without diabetes (NDO, N = 20), and patients without obesity and diabetes (lean, N = 10) were assessed before surgery and at 1 and 12 months after SG.

Results

Preoperative TXNIP level was significantly higher in T2D (196.4 ± 76.0 pg/ml) and NDO (149.7 ± 94.1 pg/ml) patients when compared with lean patients (98.7 ± 22.7 pg/ml) (p-value < 0.05). At 1 month and 12 months postoperatively, the TXNIP levels were reduced significantly from the preoperative levels in the T2D and NDO patients (p-value < 0.05). Before surgery, a correlation between TXNIP and fasting blood glucose (FBG) (r2 = 0.1585, p-value = 0.0109), HbA1C (r2 = 0.2120, p-value = 0.0028), and insulin (r2 = 0.1217, p-value = 0.0274) was observed. At 12 months after surgery, the reduction of TXNIP was also correlated with the degree of FBG (r2 = 0.1038, p-value = 0.0426), HbA1C (r2 = 0.2459, p-value = 0.0011), and insulin (r2 = 0.1365, p-value = 0.0190) reduction.

Conclusion

Plasma TXNIP level is elevated in obesity patients with/without diabetes. SG resulted in a significant reduction of plasma TXNIP level which is correlated with the degree of FBG, HbA1C, and insulin reduction. Regulation of TXNIP could be part of the mechanism of diabetes remission after bariatric surgery.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Aminian A, Brethauer SA, Navaneethan SD, Singh RP, Pothier CE, Nissen SE, Kashyap SR; STAMPEDE Investigators. Bariatric surgery versus intensive medical therapy for diabetes - 5-year outcomes. N Engl J Med. 2017;376(7):641–651.

  2. Reges O, Greenland P, Dicker D, Leibowitz M, Hoshen M, Gofer I, Rasmussen-Torvik LJ, Balicer RD. Association of bariatric surgery using laparoscopic banding, Roux-en-Y gastric bypass, or laparoscopic sleeve gastrectomy vs usual care obesity management with all-cause mortality. JAMA. 2018;319(3):279–90.

    Article  Google Scholar 

  3. Yang P, Bonham AJ, Ghaferi AA, Varban OA. Comparing diabetes outcomes: weight-independent effects of sleeve gastrectomy versus matched patients with similar weight loss. Ann Surg. 2020.  https://doi.org/10.1097/SLA.0000000000004298

  4. Andalib A, Aminian A. Sleeve gastrectomy and diabetes: is cure possible? Adv Surg. 2017;51(1):29–40.

    Article  Google Scholar 

  5. Aminian A, Jamal M, Augustin T, Corcelles R, Kirwan JP, Schauer PR, Brethauer SA. Failed surgical weight loss does not necessarily mean failed metabolic effects. Diabetes Technol Ther. 2015;17(10):682–4.

    Article  CAS  Google Scholar 

  6. Batterham RL, Cummings DE. Mechanisms of diabetes improvement following bariatric/metabolic surgery. Diabetes Care. 2016;39(6):893–901.

    Article  Google Scholar 

  7. Hutch CR, Sandoval D. The role of GLP-1 in the metabolic success of bariatric surgery. Endocrinology. 2017;158(12):4139–51.

    Article  CAS  Google Scholar 

  8. Sista F, Abruzzese V, Clementi M, Guadagni S, Montana L, Carandina S. Resolution of type 2 diabetes after sleeve gastrectomy: a 2-step hypothesis. Surg Obes Relat Dis. 2018;14(3):284–90.

    Article  Google Scholar 

  9. Nemati R, Lu J, Dokpuang D, Booth M, Plank LD, Murphy R. Increased bile acids and FGF19 after sleeve gastrectomy and Roux-en-Y gastric bypass correlate with improvement in type 2 diabetes in a randomized trial. Obes Surg. 2018;28(9):2672–86.

    Article  Google Scholar 

  10. Chen Y, Lu J, Nemati R, Plank LD, Murphy R. Acute changes of bile acids and FGF19 after sleeve gastrectomy and Roux-en-Y gastric bypass. Obes Surg. 2019;29(11):3605–21.

    Article  Google Scholar 

  11. Ikeda T, Aida M, Yoshida Y, Matsumoto S, Tanaka M, Nakayama J, Nagao Y, Nakata R, Oki E, Akahoshi T, Okano S, Nomura M, Hashizume M, Maehara Y. Alteration in faecal bile acids, gut microbial composition and diversity after laparoscopic sleeve gastrectomy. Br J Surg. 2020;107(12):1673–85.

    Article  CAS  Google Scholar 

  12. Yoshihara E, Fujimoto S, Inagaki N, Okawa K, Masaki S, Yodoi J, Masutani H. Disruption of TBP-2 ameliorates insulin sensitivity and secretion without affecting obesity. Nat Commun. 2010;1:127.

    Article  CAS  Google Scholar 

  13. Liang T, Wu Z, Du S, Hu L. TXNIP gene single nucleotide polymorphisms associated with the risk of type 2 diabetes mellitus in a Chinese Han population. DNA Cell Biol. 2020;39(9):1513–20.

    Article  CAS  Google Scholar 

  14. Zhang D, Cheng C, Cao M, Wang T, Chen X, Zhao Y, Wang B, Ren Y, Liu D, Liu L, Chen X, Liu F, Zhou Q, Tian G, Li Q, Guo C, Li H, Wang J, Cheng R, Hu D, Zhang M. TXNIP hypomethylation and its interaction with obesity and hypertriglyceridemia increase type 2 diabetes mellitus risk: a nested case-control study. J Diabetes. 2020;12(7):512–20.

    Article  CAS  Google Scholar 

  15. Albao DS, Cutiongco-de la Paz EM, Mercado ME, Lirio A, Mariano M, Kim S, Yangco A, Melegrito J, Wad-Asen K, Gauran II, Francisco MA, Santos-Acuin C, David-Padilla C, Murphy EJ, Paz-Pacheco E, Seielstad M. Methylation changes in the peripheral blood of Filipinos with type 2 diabetes suggest spurious transcription initiation at TXNIP. Hum Mol Genet. 2019;28(24):4208–4218.

  16. Thielen LA, Chen J, Jing G, Moukha-Chafiq O, Xu G, Jo S, Grayson TB, Lu B, Li P, Augelli-Szafran CE, Suto MJ, Kanke M, Sethupathy P, Kim JK, Shalev A. Identification of an anti-diabetic, orally available small molecule that regulates TXNIP expression and glucagon action. Cell Metab. 2020;32(3):353-365.e8.

    Article  CAS  Google Scholar 

  17. He S, Wu W, Wan Y, Nandakumar KS, Cai X, Tang X, Liu S, Yao X. GLP-1 receptor activation abrogates β-cell dysfunction by PKA Cα-mediated degradation of thioredoxin interacting protein. Front Pharmacol. 2019;10:1230.

    Article  CAS  Google Scholar 

  18. Chai TF, Hong SY, He H, Zheng L, Hagen T, Luo Y, Yu FX. A potential mechanism of metformin-mediated regulation of glucose homeostasis: inhibition of Thioredoxin-interacting protein (Txnip) gene expression. Cell Signal. 2012;24(8):1700–5.

    Article  CAS  Google Scholar 

  19. American Diabetes Association. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2018. Diabetes Care. 2018;41(Suppl 1):S13–27.

  20. Widjaja J, Pan H, Dolo PR, Yao L, Li C, Shao Y, Zhu X. Short-term diabetes remission outcomes in patients with BMI ≤ 30 kg/m2 following sleeve gastrectomy. Obes Surg. 2020;30(1):18–22.

    Article  Google Scholar 

  21. Alhawiti NM, Al Mahri S, Aziz MA, Malik SS, Mohammad S. TXNIP in metabolic regulation: physiological role and therapeutic outlook. Curr Drug Targets. 2017;18(9):1095–103.

    Article  CAS  Google Scholar 

  22. Saxena G, Chen J, Shalev A. Intracellular shuttling and mitochondrial function of thioredoxin-interacting protein. J Biol Chem. 2010;285(6):3997–4005.

    Article  CAS  Google Scholar 

  23. Xu G, Chen J, Jing G, Shalev A. Thioredoxin-interacting protein regulates insulin transcription through microRNA-204. Nat Med. 2013;19(9):1141–6.

    Article  CAS  Google Scholar 

  24. Jo S, Chen J, Xu G, Grayson TB, Thielen LA, Shalev A. miR-204 controls glucagon-like peptide 1 receptor expression and agonist function. Diabetes. 2018;67(2):256–64.

    Article  CAS  Google Scholar 

  25. Chutkow WA, Birkenfeld AL, Brown JD, Lee HY, Frederick DW, Yoshioka J, Patwari P, Kursawe R, Cushman SW, Plutzky J, Shulman GI, Samuel VT, Lee RT. Deletion of the alpha-arrestin protein Txnip in mice promotes adiposity and adipogenesis while preserving insulin sensitivity. Diabetes. 2010;59(6):1424–34.

    Article  CAS  Google Scholar 

  26. Parikh H, Carlsson E, Chutkow WA, Johansson LE, Storgaard H, Poulsen P, Saxena R, Ladd C, Schulze PC, Mazzini MJ, Jensen CB, Krook A, Björnholm M, Tornqvist H, Zierath JR, Ridderstråle M, Altshuler D, Lee RT, Vaag A, Groop LC, Mootha VK. TXNIP regulates peripheral glucose metabolism in humans. PLoS Med. 2007;4(5):e158.

  27. Blouet C, Schwartz GJ. Nutrient-sensing hypothalamic TXNIP links nutrient excess to energy imbalance in mice. J Neurosci. 2011;31(16):6019–27.

    Article  CAS  Google Scholar 

  28. Shaked M, Ketzinel-Gilad M, Cerasi E, Kaiser N, Leibowitz G. AMP-activated protein kinase (AMPK) mediates nutrient regulation of thioredoxin-interacting protein (TXNIP) in pancreatic beta-cells. PLoS One. 2011;6(12):e28804.

  29. Li X, Kover KL, Heruth DP, Watkins DJ, Moore WV, Jackson K, Zang M, Clements MA, Yan Y. New insight into metformin action: regulation of ChREBP and FOXO1 activities in endothelial cells. Mol Endocrinol. 2015;29(8):1184–94.

    Article  CAS  Google Scholar 

  30. Chen J, Couto FM, Minn AH, Shalev A. Exenatide inhibits beta-cell apoptosis by decreasing thioredoxin-interacting protein. Biochem Biophys Res Commun. 2006;346(3):1067–74.

    Article  CAS  Google Scholar 

  31. Shao W, Yu Z, Fantus IG, Jin T. Cyclic AMP signaling stimulates proteasome degradation of thioredoxin interacting protein (TxNIP) in pancreatic beta-cells. Cell Signal. 2010;22(8):1240–6.

    Article  CAS  Google Scholar 

  32. Clark AL, Kanekura K, Lavagnino Z, Spears LD, Abreu D, Mahadevan J, Yagi T, Semenkovich CF, Piston DW, Urano F. Targeting cellular calcium homeostasis to prevent cytokine-mediated beta cell death. Sci Rep. 2017;7(1):5611.

    Article  CAS  Google Scholar 

  33. Xu G, Chen J, Jing G, Shalev A. Preventing β-cell loss and diabetes with calcium channel blockers. Diabetes. 2012;61(4):848–56.

    Article  CAS  Google Scholar 

  34. Ovalle F, Grimes T, Xu G, Patel AJ, Grayson TB, Thielen LA, Li P, Shalev A. Verapamil and beta cell function in adults with recent-onset type 1 diabetes. Nat Med. 2018;24(8):1108–12.

    Article  CAS  Google Scholar 

  35. Morrison JA, Pike LA, Sams SB, Sharma V, Zhou Q, Severson JJ, Tan AC, Wood WM, Haugen BR. Thioredoxin interacting protein (TXNIP) is a novel tumor suppressor in thyroid cancer. Mol Cancer. 2014;13:62.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Science and Technology Program Project of Xuzhou (KC19157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libin Yao.

Ethics declarations

Ethical Approval Statement

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Statement of Informed Consent

Informed consent was obtained from all individual participants included in the study.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

1. Plasma TXNIP level is elevated in obesity patients with/without diabetes.

2. SG resulted in a significant reduction of plasma TXNIP level as early as 1 month and persists at 12 months after surgery.

3. A correlation between TXNIP and fasting blood glucose, HbA1c, and insulin was observed before and after the surgery.

4. A reduced level of TXNIP could be part of the mechanism of diabetes remission after bariatric surgery.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, Y., Widjaja, J., Hong, J. et al. Effect of Sleeve Gastrectomy on Plasma Thioredoxin-Interacting Protein (TXNIP). OBES SURG 31, 4829–4835 (2021). https://doi.org/10.1007/s11695-021-05649-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-021-05649-7

Keywords

Navigation