Skip to main content

Advertisement

Log in

Intestinal Electrical Stimulation Enhances Release of Postprandial Incretin Hormones Via Cholinergic Mechanisms

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Introduction

Intestinal electrical stimulation (IES) has been reported to reduce body weight and improve glucose tolerance in obese and diabetic rats. Our study aimed to investigate possible IES mechanisms involving incretin hormones using intraduodenal glucose infusion in rats. We hypothesized that the enhanced release of postprandial glucagon-like peptide-1 (GLP-1) at early phase by IES was mediated through neuro/paracrine mechanisms involving the vagal nerve and glucose-dependent insulinotropic peptide (GIP).

Methods

Fifteen normal male Sprague-Dawley rats chronically implanted with duodenal electrodes for IES, and an intra-duodenum catheter for the infusion of glucose were studied in a series of sessions with IES of different parameters with and without atropine and M3 receptor antagonist. Blood samples were collected via the tail vein for the measurement of blood glucose, and plasma GLP-1, and GIP.

Results

(1) Compared to sham-IES, IES of 0.3 ms reduced blood glucose by 16.5–28.4% between 30 and 120 min (all time points p < 0.05), and IES of 3-ms reduced blood glucose at 60 (12.6%) and 90 min (11.8%). IES of 0.3 ms showed a greater hypoglycemic effect than 3 ms (p = 0.024) at 30 min. (2) IES elevated plasma GLP-1 with 0.3 ms (p = 0.001) and with 3 ms p = 0.03). (3) IES substantially elevated plasma GIP with 0.3 ms (p = 0.002) and with 3 ms (p < 0.001). (4) Pretreatment of atropine and the M3 receptor antagonist 4-DAMP blocked the effects of IES on GLP-1, GIP, and blood glucose.

Conclusions

IES reduces postprandial blood glucose by enhancing the release of GLP-1 and GIP mediated via the cholinergic mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus--present and future perspectives. Nat Rev Endocrinol. 2011;8(4):228–36.

    Article  Google Scholar 

  2. Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest. 2000;106(4):473–81.

    Article  CAS  Google Scholar 

  3. Tasyurek HM, Altunbas HA, Balci MK, et al. Incretins: their physiology and application in the treatment of diabetes mellitus. Diabetes Metab Res Rev. 2014;30(5):354–71.

    Article  CAS  Google Scholar 

  4. Nauck M. Incretin therapies: highlighting common features and differences in the modes of action of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Diabetes Obes Metab. 2016r;18(3):203–16.

    Article  CAS  Google Scholar 

  5. Maleckas A, Venclauskas L, Wallenius V, et al. Surgery in the treatment of type 2 diabetes mellitus. Scand J Surg. 2015;104(1):40–7.

    Article  CAS  Google Scholar 

  6. De Luca M, Angrisani L, Himpens J, et al. Indications for surgery for obesity and weight-related diseases: position statements from the International Federation for the Surgery of obesity and metabolic disorders (IFSO). Obes Surg. 2016;26(8):1659–96.

    Article  Google Scholar 

  7. Thaler JP, Cummings DE. Minireview: hormonal and metabolic mechanisms of diabetes remission after gastrointestinal surgery. Endocrinology. 2009;150(6):2518–25.

    Article  CAS  Google Scholar 

  8. Wickremesekera K, Miller G, Naotunne TD, et al. Loss of insulin resistance after Roux-en-Y gastric bypass surgery: a time course study. Obes Surg. 2005;15(4):474–81.

    Article  Google Scholar 

  9. Vetter ML, Cardillo S, Rickels MR, et al. Narrative review: effect of bariatric surgery on type 2 diabetes mellitus. Ann Intern Med. 2009;150(2):94–103.

    Article  Google Scholar 

  10. Korner J, Bessler M, Cirilo LJ, et al. Effects of Roux-en-Y gastric bypass surgery on fasting and postprandial concentrations of plasma ghrelin, peptide YY, and insulin. J Clin Endocrinol Metab. 2005;90(1):359–65.

    Article  CAS  Google Scholar 

  11. Sagar PM. Surgical treatment of morbid obesity. Br J Surg. 1995;82(6):732–9.

    Article  CAS  Google Scholar 

  12. Crookes PF. Surgical treatment of morbid obesity. Annu Rev Med. 2006;57:243–64.

    Article  CAS  Google Scholar 

  13. Sun Y, Chen J. Intestinal electric stimulation decreases fat absorption in rats: therapeutic potential for obesity. Obes Res. 2004;12(8):1235–42.

    Article  CAS  Google Scholar 

  14. Aberle J, Busch P, Veigel J, Duprée A, Roesch T, Zu Eulenburg C, et al. Duodenal electric stimulation: results of a first-in-man study. Obes Surg 2016;26(2):369–375.

  15. Yin J, Zhang J, Chen JDZ. Inhibitory effects of intestinal electrical stimulation on food intake, weight loss and gastric emptying in rats. Am J Phys Regul Integr Comp Phys. 2007;293(1):R78–82.

    CAS  Google Scholar 

  16. Li S, Chen JDZ. Pulse width-dependent effects of intestinal electrical stimulation for obesity: role of gastrointestinal motility and hormones. Obes Surg. 2017;27(1):70–7.

    Article  Google Scholar 

  17. Gautam D, Gavrilova O, Jeon J, et al. Beneficial metabolic effects of M3 muscarinic acetylcholine receptor deficiency. Cell Metab. 2006;4(5):363–75.

    Article  CAS  Google Scholar 

  18. Chen JDZ, Yin J, Wei W. Electrical therapies for gastrointestinal motility disorders. Expert Rev Gastroenterol Hepatol. 2017;11(5):407–18.

    Article  CAS  Google Scholar 

  19. Li S, Chen JDZ. Cellular effects of gastric electrical stimulation on antral smooth muscle cells in rats. Am J Phys Regul Integr Comp Phys. 2010;298(6):R1580–7.

    CAS  Google Scholar 

  20. Li S, Zhu W, Zhang S, et al. Chronic intestinal electrical stimulation improves glucose intolerance and insulin resistance in diet-induced obesity rats. Obes Silver Spring Md. 2017;25(6):1061–8.

    Article  CAS  Google Scholar 

  21. Liu J, Xiang Y, Qiao X, et al. Hypoglycemic effects of intraluminal intestinal electrical stimulation in healthy volunteers. Obes Surg. 2011;21(2):224–30.

    Article  Google Scholar 

  22. Ouyang X, Li S, Tan Y, et al. Intestinal electrical stimulation attenuates hyperglycemia and prevents loss of pancreatic β cells in type 2 diabetic Goto-Kakizaki rats. Nutr Diabetes. 2019;9(1):4.

    Article  Google Scholar 

  23. Tolhurst G, Reimann F, Gribble FM. Nutritional regulation of glucagon-like peptide-1 secretion. J Physiol. 2009;587(Pt 1):27–32.

    Article  CAS  Google Scholar 

  24. Anini Y, Fu-Cheng X, Cuber JC, et al. Comparison of the postprandial release of peptide YY and proglucagon-derived peptides in the rat. Pflugers Arch. 1999;438(3):299–306.

    Article  CAS  Google Scholar 

  25. Gutzwiller JP, Göke B, Drewe J, et al. Glucagon-like peptide-1: a potent regulator of food intake in humans. Gut. 1999;44(1):81–6.

    Article  CAS  Google Scholar 

  26. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132(6):2131–57.

    Article  CAS  Google Scholar 

  27. Rask E, Olsson T, Söderberg S, et al. Impaired incretin response after a mixed meal is associated with insulin resistance in nondiabetic men. Diabetes Care. 2001;24(9):1640–5.

    Article  CAS  Google Scholar 

  28. Sandoval D, Dunki-Jacobs A, Sorrell J, et al. Impact of intestinal electrical stimulation on nutrient-induced GLP-1 secretion in vivo. Neurogastroenterol Motil. 2013;25(8):700–5.

    Article  CAS  Google Scholar 

  29. Theodorakis MJ, Carlson O, Michopoulos S, et al. Human duodenal enteroendocrine cells: source of both incretin peptides, GLP-1 and GIP. Am J Physiol Endocrinol Metab. 2006;290(3):E550–9.

    Article  CAS  Google Scholar 

  30. Rocca AS, Brubaker PL. Role of the vagus nerve in mediating proximal nutrient-induced glucagon-like peptide-1 secretion. Endocrinology. 1999;140(4):1687–94.

    Article  CAS  Google Scholar 

  31. Christensen MB. Glucose-dependent insulinotropic polypeptide: effects on insulin and glucagon secretion in humans. Dan Med J. 2016;63(4)

  32. Parker HE, Habib AM, Rogers GJ, et al. Nutrient-dependent secretion of glucose-dependent insulinotropic polypeptide from primary murine K cells. Diabetologia. 2009;52(2):289–98.

    Article  CAS  Google Scholar 

  33. Anini Y, Brubaker PL. Muscarinic receptors control glucagon-like peptide 1 secretion by human endocrine L cells. Endocrinology. 2003;144(7):3244–50.

    Article  CAS  Google Scholar 

  34. Cellini J, Jukic AMZ, LePard KJ. Neostigmine-induced contraction and nitric oxide-induced relaxation of isolated ileum from STZ diabetic guinea pigs. Auton Neurosci Basic Clin. 2011;165(2):178–90.

    Article  CAS  Google Scholar 

  35. Anini Y, Hansotia T, Brubaker PL. Muscarinic receptors control postprandial release of glucagon-like peptide-1: in vivo and in vitro studies in rats. Endocrinology. 2002;143(6):2420–6.

    Article  CAS  Google Scholar 

  36. Xu X, Lei Y, Chen JDZ. Duodenum electrical stimulation delays gastric emptying, reduces food intake and accelerates small bowel transit in pigs. Obes Silver Spring Md. 2011;19(2):442–8.

    Article  Google Scholar 

  37. Wang WF, Yin JY, De Dz Chen J. Acceleration of small bowel transit in a canine hypermotility model with intestinal electrical stimulation. J Dig Dis. 2015;16(3):135–42.

    Article  CAS  Google Scholar 

  38. Gautam D, Han S-J, Hamdan FF, et al. A critical role for beta cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo. Cell Metab. 2006;3(6):449–61.

    Article  CAS  Google Scholar 

  39. Ito Y, Kaji M, Sakamoto E, et al. The beneficial effects of a muscarinic agonist on pancreatic β-cells. Sci Rep. 2019;9(1):16180.

    Article  Google Scholar 

  40. Abello J, Ye F, Bosshard A, et al. Stimulation of glucagon-like peptide-1 secretion by muscarinic agonist in a murine intestinal endocrine cell line. Endocrinology. 1994;134(5):2011–7.

    Article  CAS  Google Scholar 

  41. Zhang J, Zhu H, Chen JDZ. Central neuronal mechanisms of intestinal electrical stimulation: effects on duodenum distention-responsive (DD-R) neurons in the VMH of rats. Neurosci Lett. 2009;457(1):27–31.

    Article  CAS  Google Scholar 

  42. Sun Y, Qin C, Foreman RD, et al. Intestinal electric stimulation modulates neuronal activity in the nucleus of the solitary tract in rats. Neurosci Lett. 2005;385(1):64–9.

    Article  CAS  Google Scholar 

Download references

Funding

This study is supported by a grant from NIH: R01DK107754.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiande D. Z. Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Statement

All procedures performed in studies involving animals were in accordance with the ethical standards of the institutional and/or national research committee. This article does not contain any studies with human performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ms# OBSU-D-20-01260

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Zhang, Y., Li, S. et al. Intestinal Electrical Stimulation Enhances Release of Postprandial Incretin Hormones Via Cholinergic Mechanisms. OBES SURG 31, 1957–1966 (2021). https://doi.org/10.1007/s11695-021-05228-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-021-05228-w

Keywords

Navigation