Assessment of the Effect of Perioperative Venous Lidocaine on the Intensity of Pain and IL-6 Concentration After Laparoscopic Gastroplasty


Background and Objectives

Opioids are associated with sedation and respiratory depression. The primary objective of this study was to assess pain intensity after gastric bypass with lidocaine. The secondary objective was to assess the IL-6 concentration, consumption of morphine, time to morphine request, time to extubation, and side effects.


Sixty patients aged 18 to 60 years, with ASA (American Society of Anesthesiologists) scores of 2 or 3, who underwent bariatric surgery were allocated to two groups. Patients in group 1 were administered lidocaine (1.5 mg/kg) 5 min before the induction of anesthesia, and group 2 was administered 0.9% saline solution in an equal volume. Subsequently, lidocaine (2 mg/kg/h) or 0.9% saline was infused during the entire surgical procedure. Anesthesia was performed with fentanyl (5 μg/kg), propofol, rocuronium, and sevoflurane. Postoperative patient-controlled analgesia was provided with morphine. The following were evaluated: pain intensity, IL-6, 24-h consumption of morphine, time to the morphine request, time to extubation, and adverse effects.


The lidocaine group had a lower pain intensity than the saline group for up to 1 h, with no differences between groups in IL-6 and time to extubation. The lidocaine group consumed less morphine within 24 h, had a longer time until the first supplemental morphine request, and had a lower incidence of nausea.


Lidocaine reduced the intensity of early postoperative pain, incidence of nausea, and consumption of morphine within 24 h and increased time to the first morphine request, without reducing the plasma concentrations of IL-6.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Rawal N. Current issues in postoperative pain management. Eur J Anaesthesiol. 2016;33(3):160–71.

    CAS  PubMed  Google Scholar 

  2. 2.

    Weibel S, Jokinen J, Pace NL, et al. Efficacy and safety of intravenous lidocaine for postoperative analgesia and recovery after surgery: a systematic review with trial sequential analysis. Br J Anaesth. 2016;116(6):770–83.

    CAS  PubMed  Google Scholar 

  3. 3.

    Sabharwal A, Christelis N. Anesthesia for bariatric surgery. BJA Educ. 2010;10(4):99–103.

    Google Scholar 

  4. 4.

    Nguyen NT, Wolfe BM. The physiologic effects of pneumoperitoneum in the morbidly obese. Ann Surg. 2005;241(2):219–26.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    de Oliveira CM, Sakata RK, Issy AM, et al. Cytokines and pain. Rev Bras Anestesiol. 2011;61(2):255–9. 60-5, 137-42

    PubMed  Google Scholar 

  6. 6.

    Lin E, Calvano SE, Lowry SF. Inflammatory cytokines and cell response in surgery. Surgery. 2000;127(2):117–26.

    CAS  PubMed  Google Scholar 

  7. 7.

    Beilin B, Bessler H, Mayburd E, et al. Effects of preemptive analgesia on pain and cytokine production in the postoperative period. Anesthesiology. 2003;98(1):151–5.

    CAS  PubMed  Google Scholar 

  8. 8.

    Azzam AAH, McDonald J, Lambert DG. Hot topics in opioid pharmacology: mixed and biased opioids. Br J Anaesth. 2019;122(6):e136–e45.

    CAS  PubMed  Google Scholar 

  9. 9.

    De Jong A, Verzilli D, Geniez M, et al. Why is the morbidly obese patient at high risk of anesthetic complications? Presse Med. 2018;47(5):453–63.

    PubMed  Google Scholar 

  10. 10.

    De Oliveira Jr GS, Duncan K, Fitzgerald P, et al. Systemic lidocaine to improve quality of recovery after laparoscopic bariatric surgery: a randomized double-blinded placebo-controlled trial. Obes Surg. 2014;24(2):212–8.

    PubMed  Google Scholar 

  11. 11.

    de Oliveira CM, Issy AM, Sakata RK. Intraoperative intravenous lidocaine. Rev Bras Anestesiol. 2010;60(3):325–33.

    PubMed  Google Scholar 

  12. 12.

    Cooke C, Kennedy ED, Foo I, et al. Meta-analysis of the effect of perioperative intravenous lidocaine on return of gastrointestinal function after colorectal surgery. Tech Coloproctol. 2019;23(1):15–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Hollmann MW, Durieux ME. Local anesthetics and the inflammatory response: a new therapeutic indication? Anesthesiology. 2000;93(3):858–75.

    CAS  PubMed  Google Scholar 

  14. 14.

    de Klaver MJ, Buckingham MG, Rich GF. Lidocaine attenuates cytokine-induced cell injury in endothelial and vascular smooth muscle cells. Anesth Analg. 2003;97(2):465–70. table of contents

    PubMed  Google Scholar 

  15. 15.

    De Oliveira Jr GS, Fitzgerald P, Streicher LF, et al. Systemic lidocaine to improve postoperative quality of recovery after ambulatory laparoscopic surgery. Anesth Analg. 2012;115(2):262–7.

    PubMed  Google Scholar 

  16. 16.

    Li J, Wang G, Xu W, et al. Efficacy of intravenous lidocaine on pain relief in patients undergoing laparoscopic cholecystectomy: a meta-analysis from randomized controlled trials. Int J Surg. 2018;50:137–45.

    CAS  PubMed  Google Scholar 

  17. 17.

    Zhao JB, Li YL, Wang YM, et al. Intravenous lidocaine infusion for pain control after laparoscopic cholecystectomy: a meta-analysis of randomized controlled trials. Medicine. 2018;97(5):e9771.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Weibel S, Jelting Y, Pace NL, et al. Continuous intravenous perioperative lidocaine infusion for postoperative pain and recovery in adults. Cochrane Database Syst Rev. 2018;6:Cd009642.

    PubMed  Google Scholar 

  19. 19.

    Hermanns H, Hollmann MW, Stevens MF, et al. Molecular mechanisms of action of systemic lidocaine in acute and chronic pain: a narrative review. Br J Anaesth. 2019;123(3):335–49.

    CAS  PubMed  Google Scholar 

  20. 20.

    Soto G, Naranjo Gonzalez M, Calero F. Intravenous lidocaine infusion. Rev Esp Anestesiol Reanim. 2018;65(5):269–74.

    CAS  PubMed  Google Scholar 

  21. 21.

    Carabalona JF, Delwarde B, Duclos A, Le Goff MC, Moulsma M, Citterio-Quentin A, Bouffard Y, Rimmele T. Serum Concentrations ofLidocaine During Bariatric Surgery. Anesth Analg 2018;1.

  22. 22.

    Oliveira CM, Sakata RK, Slullitel A, et al. Effect of intraoperative intravenous lidocaine on pain and plasma interleukin-6 in patients undergoing hysterectomy. Rev Bras Anestesiol. 2015;65(2):92–8.

    PubMed  Google Scholar 

  23. 23.

    Han PY, Duffull SB, Kirkpatrick CM, et al. Dosing in obesity: a simple solution to a big problem. Clin Pharmacol Ther. 2007;82(5):505–8.

    CAS  PubMed  Google Scholar 

  24. 24.

    Sakata RK, de Lima RC, Valadao JA, et al. Randomized, double-blind study of the effect of intraoperative intravenous lidocaine on the opioid consumption and criteria for hospital discharge after bariatric surgery. Obes Surg. 2020;30(4):1189-1193.

  25. 25.

    Kim TH, Kang H, Hong JH, et al. Intraperitoneal and intravenous lidocaine for effective pain relief after laparoscopic appendectomy: a prospective, randomized, double-blind, placebo-controlled study. Surg Endosc. 2011;25(10):3183–90.

    PubMed  Google Scholar 

  26. 26.

    Kang H, Kim BG. Intravenous lidocaine for effective pain relief after inguinal herniorrhaphy: a prospective, randomized, double-blind, placebo-controlled study. J Int Med Res. 2011;39(2):435–45.

    CAS  PubMed  Google Scholar 

  27. 27.

    Lang LH, Parekh K, Tsui BYK, et al. Perioperative management of the obese surgical patient. Br Med Bull. 2017;124(1):135–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Pouwels S, Buise MP, Twardowski P, et al. Obesity surgery and anesthesiology risks: a review of key concepts and related physiology. Obes Surg. 2019;29(8):2670–7.

    PubMed  Google Scholar 

  29. 29.

    Terkawi AS, Tsang S, Kazemi A, et al. A clinical comparison of intravenous and epidural local anesthetic for major abdominal surgery. Reg Anesth Pain Med. 2016;41(1):28–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Beaussier M, Delbos A, Maurice-Szamburski A, et al. Perioperative use of intravenous lidocaine. Drugs. 2018;78(12):1229–46.

    CAS  PubMed  Google Scholar 

  31. 31.

    Paterson HM. Continuous intravenous lidocaine infusion for postoperative pain and recovery in adults. Tech Coloproctol. 2019;23(1):69–71.

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Bailey M, Corcoran T, Schug S, et al. Perioperative lidocaine infusions for the prevention of chronic postsurgical pain: a systematic review and meta-analysis of efficacy and safety. Pain. 2018;159(9):1696–704.

    CAS  PubMed  Google Scholar 

  33. 33.

    Ventham NT, Kennedy ED, Brady RR, et al. Efficacy of intravenous lidocaine for postoperative analgesia following laparoscopic surgery: a meta-analysis. World J Surg. 2015;39(9):2220–34.

    PubMed  Google Scholar 

  34. 34.

    Kaba A, Laurent SR, Detroz BJ, et al. Intravenous lidocaine infusion facilitates acute rehabilitation after laparoscopic colectomy. Anesthesiology. 2007;106(1):11–8. discussion 5-6

    CAS  PubMed  Google Scholar 

  35. 35.

    Dunn LK, Durieux ME. Perioperative use of intravenous lidocaine. Anesthesiology. 2017;126(4):729–37.

    PubMed  Google Scholar 

  36. 36.

    Araujo MC, Sinnott CJ, Strichartz GR. Multiple phases of relief from experimental mechanical allodynia by systemic lidocaine: responses to early and late infusions. Pain. 2003;103(1–2):21–9.

    CAS  PubMed  Google Scholar 

  37. 37.

    Omote K. Intravenous lidocaine to treat postoperative pain management: novel strategy with a long-established drug. Anesthesiology. 2007;106(1):5–6.

    Google Scholar 

  38. 38.

    Hahnenkamp K, Durieux ME, Hahnenkamp A, et al. Local anaesthetics inhibit signalling of human NMDA receptors recombinantly expressed in Xenopus laevis oocytes: role of protein kinase C. Br J Anaesth. 2006;96(1):77–87.

    CAS  PubMed  Google Scholar 

  39. 39.

    Yanagidate F, Strichartz GR. Local anesthetics. Handb Exp Pharmacol. 2007;177:95–127.

    CAS  Google Scholar 

  40. 40.

    Petrenko AB, Yamakura T, Baba H, et al. The role of N-methyl-D-aspartate (NMDA) receptors in pain: a review. Anesth Analg. 2003;97(4):1108–16.

    CAS  PubMed  Google Scholar 

  41. 41.

    Watkins LR, Maier SF. Beyond neurons: evidence that immune and glial cells contribute to pathological pain states. Physiol Rev. 2002;82(4):981–1011.

    CAS  PubMed  Google Scholar 

  42. 42.

    Ortiz MP, Godoy MC, Schlosser RS, et al. Effect of endovenous lidocaine on analgesia and serum cytokines: double-blinded and randomized trial. J Clin Anesth. 2016;35:70–7.

    CAS  PubMed  Google Scholar 

Download references


Thanks are due to all patients who participate in the study, to the Hemotherapy Service of the Hospital São Domingos, and to the Immunology Laboratory of the Federal University of São Paulo.

Author information



Corresponding author

Correspondence to Rioko Kimiko Sakata.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Statement of Human Rights

All procedures were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Statement of Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material


(DOC 22 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, C.M.B., Coelho, L.M.G., Valadão, J.A. et al. Assessment of the Effect of Perioperative Venous Lidocaine on the Intensity of Pain and IL-6 Concentration After Laparoscopic Gastroplasty. OBES SURG 30, 3912–3918 (2020).

Download citation


  • Lidocaine
  • Gastroplasty
  • Postoperative pain
  • Analgesia
  • Interleukin-6