Long-Term Results of the Mediterranean Diet After Sleeve Gastrectomy

Abstract

Background

To assess dietary habits in a cohort of patients at minimum follow-up of 4 years after sleeve gastrectomy (SG) by comparing their dietary records to the Italian Mediterranean diet (IMD) recommendations.

Methods

We prospectively evaluated in 74 patients who had the SG in 2014 dietary habits by a 7-day food dietary records, weight and micronutrient status, evolution of comorbidities, use of micronutrient supplements, and frequency of physical activity.

Results

The IMD recommendations in terms of daily/weekly portions of fruits, vegetables, and complex carbohydrates were followed by 40.5%, 35.1%, and 40.5% of the participants, respectively. Concerning milk/dairy, olive oil, poultry, fish/shellfish, eggs, legumes, processed/red meat, and cold cuts, 54.1%, 85.1%, 44.5%, 75.7%, 67.6%, 35.1%, 87.8%, and 55.4% of the participants, respectively, followed the IMD recommendations. Weight regain appeared in 37.8% of participants, while physical activity was reported by the 54.0% of them. Deficiencies of vitamin B12, vitamin D, folate, iron, and anemia were found present in 6.8%, 8.1%, 24.3%, 33.8%, and 59.5% of the participants, respectively, and 18.9% of them were found to take micronutrient supplements. Improvement/remission of type 2 diabetes, hypertension, or obstructive sleep apnea was 73.3%, 64.7%, and 100% respectively.

Conclusions

In this prospective cohort with a minimum follow-up of 4 years after SG, we found an inadequate intake of fruit, vegetables, poultry, and complex carbohydrates according to the IMD recommendations; the frequency of physical activity and the use of micronutrients supplements were also inadequate. This may contribute to weight regain and micronutrient deficiencies in the long term.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Tosti V, Bertozzi B, Fontana L. Health benefits of the Mediterranean diet: metabolic and molecular mechanisms. J Gerontol A Biol Sci Med Sci. 2018;73(3):318–26.

    PubMed  CAS  Google Scholar 

  2. 2.

    Salas-Salvadó J, Becerra-Tomás N, García-Gavilán JF, et al. Mediterranean diet and cardiovascular disease prevention: what do we know? Prog Cardiovasc Dis. 2018;61(1):62–7.

    PubMed  Google Scholar 

  3. 3.

    Esposito K, Giugliano D. Mediterranean diet and type 2 diabetes. Diabetes Metab Res Rev. 2014;30(Suppl 1):34–40.

    PubMed  CAS  Google Scholar 

  4. 4.

    Donovan MG, Selmin OI, Doetschman TC, et al. Mediterranean diet: prevention of colorectal cancer. Front Nutr. 2017;4:59.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Barak Y, Fridman D. Impact of Mediterranean diet on cancer: focused literature review. Cancer Genomics Proteomics. 2017;14(6):403–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  6. 6.

    Istituto Nazionale di Ricerca per gli alimenti e la nutrizione. Piramide della dieta mediterranea moderna. Available online: http://www.inran.it

  7. 7.

    Bach-Faig A, Berry EM, Lairon D, et al. Mediterranean diet foundation expert group. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011;14(12A):2274–84.

    PubMed  Google Scholar 

  8. 8.

    D'Alessandro A, De Pergola G. Mediterranean diet pyramid: a proposal for Italian people. Nutrients. 2014;6(10):4302–16.

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Pereira MA, O'Reilly E, Augustsson K, et al. Dietary fiber and risk of coronary heart disease: a pooled analysis of cohort studies. Arch Intern Med. 2004;164(4):370–6.

    PubMed  Google Scholar 

  10. 10.

    Schulze MB, Schulz M, Heidemann C, et al. Fiber and magnesium intake and incidence of type 2 diabetes: a prospective study and meta-analysis. Arch Intern Med. 2007;167(9):956–65.

    PubMed  CAS  Google Scholar 

  11. 11.

    Koh-Banerjee P, Franz M, Sampson L, et al. Changes in whole-grain, bran, and cereal fiber consumption in relation to 8-y weight gain among men. Am J Clin Nutr. 2004;80(5):1237–45.

    PubMed  CAS  Google Scholar 

  12. 12.

    Aune D, Chan DS, Lau R, et al. Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. Version 2. BMJ. 2011;343:d6617.

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Gil A, Ortega RM, Maldonado J. Wholegrain cereals and bread: a duet of the Mediterranean diet for the prevention of chronic diseases. Public Health Nutr. 2011;14(12A):2316–22.

    PubMed  Google Scholar 

  14. 14.

    Aune D, Norat T, Romundstad P, et al. Whole grain and refined grain consumption and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of cohort studies. Eur J Epidemiol. 2013;28(11):845–58.

    PubMed  CAS  Google Scholar 

  15. 15.

    Angrisani L, Santonicola A, Iovino P, et al. IFSO worldwide survey 2016: primary, endoluminal, and revisional procedures. Obes Surg. 2018;28(12):3783–94.

    PubMed  Google Scholar 

  16. 16.

    Iannelli A, Treacy P, Sebastianelli L, et al. Perioperative complications of sleeve gastrectomy: review of the literature. J Minim Access Surg. 2019;15(1):1–7.

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Melissas J, Daskalakis M, Koukouraki S, et al. Sleeve gastrectomy-a “food limiting” operation. Obes Surg. 2008;18(10):1251–6.

    PubMed  Google Scholar 

  18. 18.

    Schiavo L, Pilone V, Rossetti G, et al. The role of the nutritionist in a multidisciplinary bariatric surgery team. Obes Surg. 2019;29(3):1028–30.

    PubMed  Google Scholar 

  19. 19.

    Mechanick JI, Youdim A, Jones DB, et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient – 2013 update: cosponsored by America Association of Clinical Endocrinologists, The Obesity Surgery, and the American Society for Metabolic & Bariatric Surgery. Obesity. 2013;21(Suppl 1):S1–27.

    PubMed  CAS  Google Scholar 

  20. 20.

    Grover BT, Morell MC, Kothari SN, et al. Defining weight loss after bariatric surgery: a call for standardization. Obes Surg. 2019;29:3493–9. https://doi.org/10.1007/s11695-019-04022-z.

    Article  PubMed  Google Scholar 

  21. 21.

    Nedelcu M, Khwaja HA, Rogula TG. Weight regain after bariatric surgery—how should it be defined? Surg Obes Relat Dis. 2016;12(5):1129–30.

    PubMed  Google Scholar 

  22. 22.

    Johnson Stoklossa C, Atwal S. Nutrition care for patients with weight regain after bariatric surgery. Gastroenterol Res Pract. 2013;2013:256145–7. https://doi.org/10.1155/2013/256145.

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Brethauer SA, Kim J, el Chaar M, et al. Standardized outcomes reporting in metabolic and bariatric surgery. Surg Obes Relat Dis. 2015;11(3):489–506.

    PubMed  Google Scholar 

  24. 24.

    von Drygalski A, Andris DA, Nuttleman PR, et al. Anemia after bariatric surgery cannot be explained by iron deficiency alone: results of a large cohort study. Surg Obes Relat Dis. 2011;7(2):151–6.

    Google Scholar 

  25. 25.

    de Benoist B. Conclusions of a WHO technical consultation on folate and vitamin B12 deficiencies. Food Nutr Bull. 2008;29(2 Suppl):S238–44.

    PubMed  Google Scholar 

  26. 26.

    Allied Health Sciences Section Ad Hoc Nutrition Committee, Aills L, Blankenship J, et al. ASMBS allied health nutritional guidelines for the surgical weight loss patient. Surg Obes Relat Dis. 2008;4(5 Suppl):S73–108.

    Google Scholar 

  27. 27.

    Ortega RM, Pérez-Rodrigo C, López-Sobaler AM. Dietary assessment methods: dietary records. Nutr Hosp. 2015;31(Suppl 3):38–45.

    PubMed  Google Scholar 

  28. 28.

    Smith Jr JC, Butrimovitz GP, Purdy WC. Direct measurement of zinc in plasma by atomic adsorption spectroscopy. Clin Chem. 1979;25(8):1487–91.

    PubMed  CAS  Google Scholar 

  29. 29.

    Schiavo L, Scalera G, Pilone V, et al. Patient adherence in following a prescribed diet and micronutrient supplements after laparoscopic sleeve gastrectomy: our experience during 1 year of follow-up. J Hum Nutr Diet. 2017;30(1):98–104.

    PubMed  CAS  Google Scholar 

  30. 30.

    Gjessing HR, Nielsen HJ, Mellgren G, et al. Energy intake, nutritional status and weight reduction in patients one year after laparoscopic sleeve gastrectomy. Springerplus. 2013;2:352.

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Ammon BS, Bellanger DE, Geiselman PJ, et al. Short-term pilot study of the effect of sleeve gastrectomy on food preference. Obes Surg. 2015;25(6):1094–7.

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Eden T, Rajput-Ray M, Ray S. Micronutrient and vitamin physiology and requirements in critically ill patients. In: Faber P, Siervo M, editors. Nutrition in critical care. Cambridge: Cambridge University Press; 2014. p. 33–42.

    Google Scholar 

  33. 33.

    Aills L, Blankenship J, Buffington C, et al. ASMBS allied health nutritional guidelines for the surgical weight loss patient. Surg Obes Relat Dis. 2008;4(5 Suppl):S73–108.

    PubMed  Google Scholar 

  34. 34.

    Thibault R, Huber O, Azagury DE, et al. Twelve key nutritional issues in bariatric surgery. Clin Nutr. 2016;35(1):12–7.

    PubMed  Google Scholar 

  35. 35.

    Aaseth E, Fagerland MW, Aas AM, et al. Vitamin concentrations 5 years after gastric bypass. Eur J Clin Nutr. 2015;69(11):1249–55.

    PubMed  CAS  Google Scholar 

  36. 36.

    Alexandrou A, Armeni E, Kouskouni E, et al. Cross-sectional long-term micronutrient deficiencies after sleeve gastrectomy versus Roux-en-Y gastric bypass: a pilot study. Surg Obes Relat Dis. 2014;10(2):262–8.

    PubMed  Google Scholar 

  37. 37.

    Moizé V, Andreu A, Flores L, et al. Long-term dietary intake and nutritional deficiencies following sleeve gastrectomy or Roux-En-Y gastric bypass in a Mediterranean population. J Acad Nutr Diet. 2013;113(3):400–10.

    PubMed  Google Scholar 

  38. 38.

    Bailly L, Schiavo L, Sebastianelli L, et al. Anemia and Bariatric Surgery: Results of a National French Survey on Administrative Data of 306,298 Consecutive Patients Between 2008 and 2016. Obes Surg. 2018;28(8):2313–20.

    PubMed  Google Scholar 

  39. 39.

    Sarkhosh K, Birch DW, Sharma A, et al. Complications associated with laparoscopic sleeve gastrectomy for morbid obesity: a surgeon’s guide. Can J Surg. 2013;56(5):347–52.

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Berger JR. The neurological complications of bariatric surgery. Arch Neurol. 2004;61(8):1185–9.

    PubMed  Google Scholar 

  41. 41.

    Snyder-Marlow G, Taylor D, Lenhard MJ. Nutrition care for patients undergoing laparoscopic sleeve gastrectomy for weight loss. J Am Diet Assoc. 2010;110(4):600–7.

    PubMed  Google Scholar 

  42. 42.

    Rubio MA, Moreno C. Implicaciones nutricionales de la cirurgia bariàtrica sobre el tracto gastrointestinal. Rev Nutr Hosp. 2007;22(2):124–34.

    CAS  Google Scholar 

  43. 43.

    Soares FL, Bissoni de Sousa L, Corradi-Perini C, et al. Food quality in the late postoperative period of bariatric surgery: an evaluation using the bariatric food pyramid. Obes Surg. 2014;24(9):1481–6.

    PubMed  Google Scholar 

  44. 44.

    Moizé VL, Pi-Sunyer X, Mochari H, et al. Nutritional pyramid for post-gastric bypass patients. Obes Surg. 2010;20(8):1133–41.

    PubMed  Google Scholar 

  45. 45.

    Schiavo L, Favrè G, Pilone V, et al. Low-purine diet is more effective than normal-purine diet in reducing the risk of gouty attacks after sleeve gastrectomy in patients suffering of gout before surgery: a retrospective study. Obes Surg. 2018;28(5):1263–70.

    PubMed  Google Scholar 

  46. 46.

    Schiavo L, Scalera G, Sergio R, et al. Clinical impact of Mediterranean enriched-protein diet on liver size, visceral fat, fat mass, and fat-free mass in patients undergoing sleeve gastrectomy. Surg Obes Relat Dis. 2015;11(5):1164–70.

    PubMed  Google Scholar 

  47. 47.

    Schiavo L, Scalera G, Pilone V, et al. Micronutrient deficiencies in patients candidate for bariatric surgery: a prospective, preoperative trial of screening, diagnosis, and treatment. Int J Vitam Nutr Res. 2015;85(5–6):340–7.

    PubMed  CAS  Google Scholar 

  48. 48.

    Schiavo L, Pilone V, Rossetti G, et al. A 4-week preoperative ketogenic micronutrient-enriched diet is effective in reducing body weight, left hepatic lobe volume, and micronutrient deficiencies in patients undergoing bariatric surgery: a prospective pilot study. Obes Surg. 2018;28(8):2215–24.

    PubMed  Google Scholar 

  49. 49.

    Schiavo L, Scalera G, Pilone V, et al. A comparative study examining the impact of a protein-enriched vs normal protein postoperative diet on body composition and resting metabolic rate in obese patients after sleeve gastrectomy. Obes Surg. 2017;27(4):881–8.

    PubMed  Google Scholar 

  50. 50.

    Graham C, Switzer N, Reso A, et al. Sleeve gastrectomy and hypertension: a systematic review of long-term outcomes. Surg Endosc. 2019;33(9):3001–7.

    PubMed  Google Scholar 

  51. 51.

    Yip S, Plank LD, Murphy R. Gastric bypass and sleeve gastrectomy for type 2 diabetes: a systematic review and meta-analysis of outcomes. Obes Surg. 2013;23(12):1994–2003.

    PubMed  Google Scholar 

  52. 52.

    Del Genio G, Limongelli P, Del Genio F, et al. Sleeve gastrectomy improves obstructive sleep apnea syndrome (OSAS): 5 year longitudinal study. Surg Obes Relat Dis. 2016;12(1):70–4.

    PubMed  Google Scholar 

  53. 53.

    Himpens J, Dobbeleir J, Peeters G. Long-term results of laparoscopic sleeve gastrectomy for obesity. Ann Surg. 2010;252(2):319–24.

    PubMed  Google Scholar 

  54. 54.

    Bohdjalian A, Langer FB, Shakeri-Leiden Muhler S, et al. Sleeve gastrectomy as sole and definitive bariatric procedure: 5-year results for weight loss and ghrelin. Obes Surg. 2010;20(5):535–40.

    PubMed  Google Scholar 

  55. 55.

    Braghetto I, Csendes A, Lanzarini E, et al. Is laparoscopic sleeve gastrectomy an acceptable primary bariatric procedure in obese patients? Early and 5-year postoperative results. Surg Laparosc Endosc Percutan Tech. 2012;22(6):479–86.

    PubMed  Google Scholar 

  56. 56.

    Jacobi D, Ciangura C, Couet C, et al. Physical activity and weight loss following bariatric surgery. Obesity Rev. 2011;12(5):366–77.

    CAS  Google Scholar 

  57. 57.

    King WC, Bond DS. The importance of preoperative and postoperative physical activity counseling in bariatric surgery. Exerc Sport Sci Rev. 2013;41(1):26–35.

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Carnero EA, Dubis GS, Hames KC, et al. Randomized trial reveals that physical activity and energy expenditure are associated with weight and body composition after RYGB. Obesity (Silver Spring). 2017;25(7):1206–16.

    Google Scholar 

  59. 59.

    Marcon ER, Baglioni S, Bittencourt L, et al. What is the best treatment before bariatric surgery? Exercise, exercise and group therapy, or conventional waiting: a randomized controlled trial. Obes Surg. 2017;27(3):763–73.

    PubMed  Google Scholar 

  60. 60.

    King WC, Chen JY, Bond DS, et al. Objective assessment of changes in physical activity and sedentary behavior: pre- through 3 years post-bariatric surgery. Obesity (Silver Spring). 2015;23(6):1143–50.

    Google Scholar 

  61. 61.

    Panagiotakos DB, Milias GA, Pitsavos C, et al. MedDietScore: a computer program that evaluates the adherence to the Mediterranean dietary pattern and its relation to cardiovascular disease risk. Comput Methods Prog Biomed. 2006;83(1):73–7.

    Google Scholar 

  62. 62.

    Rumawas ME, Dwyer JT, McKeown NM, et al. The development of the Mediterranean-style dietary pattern score and its application to the American diet in the Framingham Offspring Cohort. J Nutr. 2009;139(6):1150–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  63. 63.

    Stefler D, Malyutina S, Kubinova R, et al. Mediterranean diet score and total and cardiovascular mortality in Eastern Europe: the HAPIEE study. Eur J Nutr. 2017;56(1):421–9.

    PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luigi Schiavo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schiavo, L., Di Rosa, M., Tramontano, S. et al. Long-Term Results of the Mediterranean Diet After Sleeve Gastrectomy. OBES SURG 30, 3792–3802 (2020). https://doi.org/10.1007/s11695-020-04695-x

Download citation

Keywords

  • Mediterranean diet
  • Sleeve gastrectomy
  • Bariatric surgery
  • Obesity
  • Micronutrient deficiencies