Skip to main content


Log in

Gut Microbial Predictors of Type 2 Diabetes Remission Following Bariatric Surgery

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript



Distinct anatomical rearrangements of the gastrointestinal tract achieved by various types of bariatric surgery cause changes in nutrient intake and gut microbiota. The contribution of such gut microbiota changes to remission of type 2 diabetes (T2D) remains unclear.


We examined gut microbiota changes following banded Roux-en-Y gastric bypass (RYGB) or sleeve gastrectomy (SG) in a randomised study, in relation to T2D remission.

Materials and Methods

Whole-metagenome shotgun sequencing was carried out on paired stool samples at pre- and 1-year post-surgery collected from 44 participants with T2D randomised to banded Roux-en-Y gastric bypass (RYGB) or sleeve gastrectomy (SG). Taxonomic composition and predicted functional potential of the gut bacteria were identified using HUMANn2, and annotated using MetaCyc. Five-day dietary records (analysed using FoodWorks v8.0), body weight and diabetes status were recorded at both time points.


RYGB participants had higher percentage excess weight loss than SG (p = 0.01), even though dietary intake was similar at 1-year post-surgery. Similar proportions achieved diabetes remission (HbA1c < 48 mmol/mol without medications) after either RYGB (68%) or SG (59%). RYGB resulted in increased abundances of Firmicutes and Proteobacteria, while SG resulted in increased Bacteroidetes. Pre-surgery, an increased abundance of Eubacteriaceae (p = 0.01) and Alistipes putredinis (p = 0.01) was observed in those who went on to remit from T2D post-surgery. Following surgery, Lachnospiraceae (p = 0.04) and Roseburia (p = 0.01) species were more abundant in those who had achieved T2D remission.


Specific stool bacterial taxa may signal likelihood of T2D remission after bariatric surgery which is potentially mediated by increases in Lachnospiraceae and Roseburia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others



Analysis of variance


Body mass index




Linear discriminant analysis


Linear discriminant analysis effect size


Permutational multivariate analysis of variance


Randomised controlled trial


Roux-en-Y gastric bypass


Short chain fatty acids


Sleeve gastrectomy


Type 2 diabetes


Very low calorie diet


  1. Buchwald H, Estok R, Fahrbach K, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122(3):248–256.e5.

    Article  PubMed  Google Scholar 

  2. Vidal J, Ibarzabal A, Romero F, et al. Type 2 diabetes mellitus and the metabolic syndrome following sleeve gastrectomy in severely obese subjects. Obes Surg. 2008;18:1077–82.

    Article  CAS  PubMed  Google Scholar 

  3. Lee W-J, Chong K, Ser K-H, et al. Gastric bypass vs sleeve gastrectomy for type 2 diabetes mellitus: a randomized controlled trial. Arch Surg. 2011;146(2):143–8.

    Article  PubMed  Google Scholar 

  4. Murphy R, Clarke MG, Evennett NJ, et al. Laparoscopic sleeve gastrectomy versus banded Roux-en-Y gastric bypass for diabetes and obesity: a prospective randomised double-blind trial. Obes Surg. 2018;28(2):293–302.

    Article  PubMed  Google Scholar 

  5. Schauer PR, Kashyap SR, Wolski K, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366(17):1567–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wolfe BM, Kvach E, Eckel RH. Treatment of obesity: weight loss and bariatric surgery. Circ Res. 2017;118(11):1844–55.

    Article  CAS  Google Scholar 

  7. Pories WJ. Bariatric surgery: risks and rewards. J Clin Endocrinol Metab. 2008;93:s89–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Davies N, O’Sullivan JM, Plank LD, et al. Altered gut microbiome after bariatric surgery and its association with metabolic benefits: a systematic review. Surg Obes Relat Dis. 2019;15:656–65.

    Article  PubMed  Google Scholar 

  9. Turnbaugh PJ, Gordon JI. The core gut microbiome, energy balance and obesity. J Physiol. 2009;587(17):4153–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiom in obese and lean twins. Nature. 2009;457(32089):480–4.

    Article  CAS  PubMed  Google Scholar 

  11. Duncan SH, Lobley GE, Holtrop G, et al. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond). 2008;32(11):1720–4.

    Article  CAS  Google Scholar 

  12. Wang Y, Luo X, Mao X, et al. Gut microbiome analysis of type 2 diabetic patients from the Chinese minority ethnic groups the Uygurs and Kazaks. PLoS One. 2017;12(3):1–15.

    Google Scholar 

  13. Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang H, DiBaise JK, Zuccolo A, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A. 2009;106(7):2365–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Furet J-P, Kong L-C, Tap J, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010;59(12):3049–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Graessler J, Qin Y, Zhong H, et al. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. Pharmacogenomics J. 2013;13(6):514–22.

  17. Kong LC, Tap J, Aron-Wisnewsky J, et al. Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. Am J Clin Nutr. 2013;98(1):16–24.

    Article  CAS  PubMed  Google Scholar 

  18. Tremaroli V, Karlsson F, Werling M, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22(2):228–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Damms-Machado A, Mitra S, Schollenberger AE, et al. Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption. Biomed Res Int. 2015;2015:1–12.

  20. Palleja A, Kashani A, Allin KH, et al. Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Med. 2016;8(1):67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Murphy R, Tsai P, Jullig M, et al. Differential changes in gut microbiota after gastric bypass and sleeve gastrectomy bariatric surgery vary according to diabetes remission. Obes Surg. 2017;27(4):917–25.

    Article  PubMed  Google Scholar 

  22. Sanmiguel CP, Jacobs J, Gupta A, et al. Surgically induced changes in gut microbiome and hedonic eating as related to weight loss. Psychosom Med. 2017;79(8):880–7.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Federico A, Dallio M, Tolone S, et al. Gastrointestinal hormones, intestinal microbiota and metabolic homeostasis in obese patients: effect of bariatric surgery. In Vivo. 2016;30(3):321–30.

    CAS  PubMed  Google Scholar 

  24. Patrone V, Vajana E, Minuti A, et al. Postoperative changes in fecal bacterial communities and fermentation products in obese patients undergoing bilio-intestinal bypass. Front Microbiol. 2016;7(FEB):200.

    PubMed  PubMed Central  Google Scholar 

  25. Medina DA, Pedreros JP, Turiel D, et al. Distinct patterns in the gut microbiota after surgical or medical therapy in obese patients. PeerJ. 2017;5(6):3443.

    Article  CAS  Google Scholar 

  26. Ilhan ZE, DiBaise JK, Isern NG, et al. Distinctive microbiomes and metabolites linked with weight loss after gastric bypass, but not gastric banding. ISME J. 2017;11(9):2047–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen H, Qian L, Lv Q, et al. Change in gut microbiota is correlated with alterations in the surface molecule expression of monocytes after Roux-en-Y gastric bypass surgery in obese type 2 diabetic patients. Am J Transl Res. 2017;9(3):1243–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Walker AW, Ince J, Duncan SH, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2011;5(2):220–30.

    Article  CAS  PubMed  Google Scholar 

  29. Imhann F, Vich Vila A, Bonder MJ, et al. The influence of proton pump inhibitors and other commonly used medication on the gut microbiota. Gut Microbes. 2017;8(4):351–8.

  30. Scott KP, Gratz SW, Sheridan PO, et al. The influence of diet on the gut microbiota. Pharmacol Res. 2013;69(1):52–60.

    Article  CAS  PubMed  Google Scholar 

  31. De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107(33):14691–6.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Heinsen FA, Fangmann D, Müller N, et al. Beneficial effects of a dietary weight loss intervention on human gut microbiome diversity and metabolism are not sustained during weight maintenance. Obes Facts. 2017;9(6):379–91.

    Article  CAS  Google Scholar 

  33. Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-holm L, et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes , contributing to the therapeutic effects of the drug. Nat Med. 2017;23(7):850–8.

  34. Forslund K, Hildebrand F, Nielsen T, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528(7581):262–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mardinoglu A, Boren J, Smith U. Confounding effects of metformin on the human gut microbiome in type 2 diabetes. Cell Metab. 2016;23(1):10–2.

    Article  CAS  PubMed  Google Scholar 

  36. Seto CT, Jeraldo P, Orenstein R, et al. Prolonged use of a proton pump inhibitor reduces microbial diversity: implications for Clostridium difficile susceptibility. Microbiome. 2014;2(1):42.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Imhann F, Bonder MJ, Vich Vila A, et al. Proton pump inhibitors affect the gut microbiome. Gut. 2015;

  38. Jackson MA, Goodrich JK, Maxan ME, et al. Proton pump inhibitors alter the composition of the gut microbiota. Gut. 2016;65(5):749–56.

    Article  PubMed  CAS  Google Scholar 

  39. Murphy R, Evennett NJ, Clarke MG, et al. Sleeve gastrectomy versus Roux-en-Y gastric bypass for type 2 diabetes and morbid obesity: double-blind randomised clinical trial protocol. BMJ Open. 2016;6(7):e011416.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Caspi R, Billington R, Fulcher CA, et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res. 2018;46(D1):D633–9.

  41. Segata N, Waldron L, Ballarini A, et al. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods. 2012;9(8):811–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Luijten JCHBM, Vugts G, Nieuwenhuijzen GAP, et al. The importance of the microbiome in bariatric surgery : a systematic review. Obes Surg. 2019;29:2338–49.

    Article  PubMed  Google Scholar 

  43. Vital M, Karch A, Pieper DH. Colonic butyrate-producing communities in humans: an overview using omics data. msystems. 2017;2(6):1–18.

    Article  Google Scholar 

  44. Jandhyala SM, Talukdar R, Subramanyam C, et al. Role of the normal gut microbiota. World J Gastroenterol. 2015;21(29):8787–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Remely M, Hippe B, Zanner J, et al. Gut microbiota of obese, type 2 diabetic individuals is enriched in Faecalibacterium prausnitzii, Akkermansia muciniphila and Peptostreptococcus anaerobius after weight loss. Endocr Metab Immune Disord Drug Targets. 2016;16:99–106.

    Article  CAS  PubMed  Google Scholar 

  46. Saulnier DM, Riehle K, Mistretta T, et al. Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology. 2011;141(5):1782–91.

    Article  CAS  PubMed  Google Scholar 

  47. Jackson DN, Theiss AL. Gut bacteria signaling to mitochondria in intestinal inflammation and cancer. Gut Microbes. 2019;0(0):1–20.

    Google Scholar 

  48. Arrieta M, Finlay BB, Rawls J, et al. The commensal microbiota drives immune homeostasis. Front Immunol. 2012;3(March):1–6.

    Google Scholar 

  49. Lewis DA, Brown R, Williams J, et al. The human urinary microbiome ; bacterial DNA in voided urine of asymptomatic adults. Front Cell Infect Microbiol. 2013;3(August):1–14.

    Google Scholar 

  50. Papa E, Docktor M, Smillie C, et al. Non-invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease. PLoS One. 2012;7(6):e39242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. De Angelis M, Piccolo M, Vannini L, et al. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS One. 2013;8(10):1–18.

    Article  CAS  Google Scholar 

  52. Zhang Y, Li S, Gan R, et al. Impacts of gut bacteria on human health and diseases. Int J Mol Sci. 2015;16:7493–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vaarala O. Gut microbiota and type 1 diabetes. Rev Diabet Stud. 2013;9(4):251–9.

    Article  PubMed Central  Google Scholar 

  54. Maiuolo J, Oppedisano F, Gratteri S, et al. Regulation of uric acid metabolism and excretion. Int J Cardiol. 2016;213:8–14.

    Article  PubMed  Google Scholar 

  55. Vogels GD, Van Der Drift C. Degradation of purines and pyrimidines by microorganisms. Bacteriol Rev. 1976;40(2):403–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Frank DN, St Amand AL, Feldman RA, et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007;104(34):13780–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dahiya DK, Renuka, Dangi AK, Shandilya UM, Puniya AK, Shukla P. Microbiome and metabolome in diagnosis, therapy and other strategic applications. 2019. 417–424 p.

  58. Million M, Tomas J, Wagner C, et al. New insights in gut microbiota and mucosal immunity of the small intestine. Hum Microbiome J. 2018;7–8(January):23–32.

    Article  Google Scholar 

  59. Mchardy IH, Goudarzi M, Tong M, et al. Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships. Microbiome. 2013;1(17):1–19.

    Google Scholar 

  60. Sberro H, Fremin BJ, Zlitni S, et al. Large-scale analyses of human microbiomes reveal thousands of small, novel genes. Cell. 2019;178(5):1245–1259.e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references


We would like to acknowledge the following people for their generous contribution to this trial and manuscript: Michael Booth, Bronwen Jones, Hisham Hammodat and Michael G. Clarke.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Rinki Murphy.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval Statement

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent Statement

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 71 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davies, N., O’Sullivan, J.M., Plank, L.D. et al. Gut Microbial Predictors of Type 2 Diabetes Remission Following Bariatric Surgery. OBES SURG 30, 3536–3548 (2020).

Download citation

  • Published:

  • Issue Date:

  • DOI: