Skip to main content

Advertisement

Log in

Two Bariatric Surgical Procedures Differentially Alter the Intestinal Microbiota in Obesity Patients

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Aims

To explore the intestinal microbiota composition affected by the two most widely used procedures of bariatric surgery, laparoscopic sleeve gastrectomy (LSG) and laparoscopic roux-en-Y gastric bypass (LRYGB), in Chinese obesity patients.

Methods

Stool samples were collected from the obese patients before (n = 87) and with follow-up after the surgery (n = 53). After DNA extraction, 16S rDNA (V3 + V4 regions) sequencing was completed on Illumina HiSeq 2500 sequencing platform. The samples were analyzed base on four groups, pre-LSG (n = 54), pre-LRYGB (n = 33), post-LSG (n = 33), and post-LRYGB (n = 20). The linear mixed models were used to analyze the alteration of intestinal microbiota before and after the surgeries of LSG or LRYGB. Student’s t test and χ2 test were used for analysis of independent groups; Metastats analysis was used to compare the relative abundance of bacteria, and Pearson correlation and Spearman correlation analysis were used to test the correlation between indicated groups.

Results

87 patients were included and 53 (60.92%) of them completed the follow-up (9.60 ± 3.92 months). Body mass index (BMI) decreased from 37.84 ± 6.16 kg/m2 to 26.22 ± 4.33 kg/m2 after LSG and from 45.75 ± 14.26 kg/m2 to 33.15 ± 10.99 kg/m2 after LRYGB. The relative abundance of 5 phyla and 42 genera were altered after the surgery in the cohort. Although no alteration of Firmicutes was observed at phylum level, 54.76% of the altered genera belong to phylum Firmicutes. Both LSG and LRYGB procedures increased the richness and evenness of intestinal microbiota in obese patients after the surgery. Particularly, 33 genera altered after LSG and 19 genera altered after LRYGB, in which 11 genera were common alterations in both procedures.

Conclusion

Both LSG and LRYGB altered the composition of intestinal microbiota in Chinese obesity patients, and particularly increased the richness and evenness of microbiota. Genera belonging to phylum Firmicutes were the most altered bacteria by bariatric surgery. The procedure of LSG resulted in much more pronounced alteration of the intestinal microbiota abundance than that observed in LRYGB. While different genera were altered after LSG and LRYGB procedures, 10 genera were the common altered genera in both procedures. Bacteria altered after LSG and LRYGB were functionally associated with BMI, and with relieving of the metabolic syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig.3

Similar content being viewed by others

References

  1. World Health Organization. Global Health Observatory (GHO) data: overweight and obesity. http://www.who.int/gho/ncd/risk_factors/overweight_text/en/. 2017 [Available from: https://www.who.int/gho/ncd/risk_factors/overweight_text/en/.

  2. World Health Organization. Global Health Observatory data repository: prevalence of overweight among adults. http://apps.who.int/gho/data/node.main.A897A?lang=en 2017 [Available from: http://apps.who.int/gho/data/node.main.A897A?lang=en.

  3. Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration, Lu Y, Hajifathalian K, et al. Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary heart disease and stroke: a pooled analysis of 97 prospective cohorts with 1·8 million participants. Lancet. 2014;383(9921):970–83.

    Article  Google Scholar 

  4. Haslam DW, James WP. Obesity. Lancet. 2005;366(9492):1197–209.

    Article  PubMed  Google Scholar 

  5. Ley RE, Turnbaugh PJ, Klein S, et al. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–3.

    Article  CAS  PubMed  Google Scholar 

  6. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–4.

    Article  CAS  PubMed  Google Scholar 

  7. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31.

    Article  PubMed  Google Scholar 

  8. Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60.

    Article  CAS  PubMed  Google Scholar 

  9. Zhao L, Zhang F, Ding X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359(6380):1151–6.

    Article  CAS  PubMed  Google Scholar 

  10. Amar J, Burcelin R, Ruidavets JB, et al. Energy intake is associated with endotoxemia in apparently healthy men. Am J Clin Nutr. 2008;87(5):1219–23.

    Article  CAS  PubMed  Google Scholar 

  11. Remely M, Haslberger AG. The microbial epigenome in metabolic syndrome. Mol Asp Med. 2017;54:71–7.

    Article  CAS  Google Scholar 

  12. Cani PD, Delzenne NM. Gut microflora as a target for energy and metabolic homeostasis. Curr Opin Clin Nutr Metab Care. 2007;10(6):729–34.

    Article  PubMed  Google Scholar 

  13. Kang Y, Cai Y. Gut microbiota and obesity: implications for fecal microbiota transplantation therapy. Hormones. 2017;16(3):223–34.

    Article  PubMed  Google Scholar 

  14. De Luca M, Angrisani L, Himpens J, et al. Indications for surgery for obesity and weight-related diseases: position statements from the International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO). Obes Surg. 2016;26(8):1659–96.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schauer PR, Kashyap SR, Wolski K, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366(17):1567–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schauer PR, Bhatt DL, Kirwan JP, et al. Bariatric surgery versus intensive medical therapy for diabetes—5-year outcomes. N Engl J Med. 2017;376(7):641–51.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bays H, Kothari SN, Azagury DE, et al. Lipids and bariatric procedures part 2 of 2: scientific statement from the American Society for Metabolic and Bariatric Surgery (ASMBS), the National Lipid Association (NLA), and Obesity Medicine Association (OMA). Surg Obes Relat Dis. 2016;12(3):468–95.

    Article  PubMed  Google Scholar 

  18. Thaler JP, Cummings DE. Minireview: hormonal and metabolic mechanisms of diabetes remission after gastrointestinal surgery. Endocrinology. 2009;150(6):2518–25.

    Article  CAS  PubMed  Google Scholar 

  19. Angrisani L, Santonicola A, Iovino P, et al. IFSO worldwide survey 2016: primary, endoluminal, and revisional procedures. Obes Surg. 2018;28(12):3783–94.

    Article  PubMed  Google Scholar 

  20. English WJ, Demaria EJ, Brethauer SA, et al. American Society for Metabolic and Bariatric Surgery estimation of metabolic and bariatric procedures performed in the United States in 2016. Surg Obes Relat Dis. 2018;14(3):259–63.

    Article  PubMed  Google Scholar 

  21. Lars S, Markku P, Peter JC, et al. Bariatric surgery and long-term cardiovascular events. Jama. 2013;307(1):56–65.

    Google Scholar 

  22. Douglas IJ, Bhaskaran K, Batterham RL, et al. Bariatric surgery in the United Kingdom: a cohort study of weight loss and clinical outcomes in routine clinical care. PLoS Med. 2015;12(12):e1001925.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Del Genio G, Limongelli P, Del Genio F, et al. Sleeve gastrectomy improves obstructive sleep apnea syndrome (OSAS): 5 year longitudinal study. Surg Obes Relat Dis. 2016;12(1):70–4.

    Article  PubMed  Google Scholar 

  24. Batterham RL, Cummings DE. Mechanisms of diabetes improvement following bariatric/metabolic surgery. Diabetes Care. 2016;39(6):893–901.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Furet JP, Kong LC, Tap J, et al. Differential adaptation of human gut microbiota to bariatric surgery–induced weight loss links with metabolic and low-grade inflammation markers. Diabetes. 2010;59(12):3049–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ishida RK, Faintuch J, Ribeiro AS, et al. Asymptomatic gastric bacterial overgrowth after bariatric surgery: are long-term metabolic consequences possible? Obes Surg. 2014;24(11):1856–61.

    Article  PubMed  Google Scholar 

  27. Kong LC, Tap J, Aron-Wisnewsky J, et al. Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. Am J Clin Nutr. 2013;98(1):16–24.

    Article  CAS  PubMed  Google Scholar 

  28. Murphy R, Tsai P, Jullig M, et al. Differential changes in gut microbiota after gastric bypass and sleeve gastrectomy bariatric surgery vary according to diabetes remission. Obes Surg. 2017;27(4):917–25.

    Article  PubMed  Google Scholar 

  29. Palleja A, Kashani A, Allin KH, et al. Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome medicine. 2016;8(1):67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Tremaroli V, Karlsson F, Werling M, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22(2):228–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shao Y, Ding R, Xu B, et al. Alterations of gut microbiota after roux-en-Y gastric bypass and sleeve gastrectomy in Sprague-Dawley rats. Obes Surg. 2017;27(2):295–302.

    Article  PubMed  Google Scholar 

  32. Yang J, Wang C, Cao G, et al. Long-term effects of laparoscopic sleeve gastrectomy versus roux-en-Y gastric bypass for the treatment of Chinese type 2 diabetes mellitus patients with body mass index 28–35 kg/m(2). BMC Surg. 2015;15:88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Ren Y, Yang W, Yang J, et al. Effect of roux-en-Y gastric bypass with different pouch size in Chinese T2DM patients with BMI 30–35 kg/m2. Obes Surg. 2015;25(3):457–63.

    Article  PubMed  Google Scholar 

  34. Wang C, Yang W, Yang J. Surgical results of laparoscopic roux-en-Y gastric bypass in super obese patients with BMI>/=60 in China. Surg Laparosc Endosc Percutan Tech. 2014;24(6):e216–20.

    Article  PubMed  Google Scholar 

  35. Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. White JR, Nagarajan N, Pop M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol. 2009;5(4):e1000352.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Langille MG, Zaneveld J, Caporaso JG, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31(9):814–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Parks DH, Tyson GW, Hugenholtz P, et al. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics. 2014;30(21):3123–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aamir K, Khan HU, Sethi G, et al. Wnt signaling mediates TLR pathway and promote unrestrained adipogenesis and metaflammation: therapeutic targets for obesity and type 2 diabetes. Pharmacol Res. 2019;152:104602.

    Article  PubMed  CAS  Google Scholar 

  40. Cummings JH, Pomare EW, Branch WJ, et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 1987;28(10):1221–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Koh A, De Vadder F, Kovatcheva-Datchary P, et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165(6):1332–45.

    Article  CAS  PubMed  Google Scholar 

  42. Zoetendal EG, Plugge CM, Akkermans AD, et al. Victivallis vadensis gen. nov., sp. nov., a sugar-fermenting anaerobe from human faeces. Int J Syst Evol Microbiol. 2003;53(Pt 1):211–5.

    Article  PubMed  Google Scholar 

  43. Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110(22):9066–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yassour M, Lim MY, Yun HS, et al. Sub-clinical detection of gut microbial biomarkers of obesity and type 2 diabetes. Genome Med. 2016;8(1):17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Chavez-Carbajal A, Nirmalkar K, Perez-Lizaur A, et al. Gut microbiota and predicted metabolic pathways in a sample of Mexican women affected by obesity and obesity plus metabolic syndrome. Int J Mol Sci. 2019;20(2)

  46. Ussar S, Griffin NW, Bezy O, et al. Interactions between gut microbiota, host genetics and diet modulate the predisposition to obesity and metabolic syndrome. Cell Metab. 2015;22(3):516–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu D, Huang J, Luo Y, et al. Fuzhuan brick tea attenuates high-fat diet-induced obesity and associated metabolic disorders by shaping gut microbiota. J Agric Food Chem. 2019;67(49):13589–604.

    Article  CAS  PubMed  Google Scholar 

  48. Wang Z, Lam KL, Hu J, et al. Chlorogenic acid alleviates obesity and modulates gut microbiota in high-fat-fed mice. Food Sci Nutr. 2019;7(2):579–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang P, Li D, Ke W, et al. Resveratrol-induced gut microbiota reduces obesity in high-fat diet-fed mice. Int J Obes. 2019;

  50. Mayengbam S, Lambert JE, Parnell JA, et al. Impact of dietary fiber supplementation on modulating microbiota-host-metabolic axes in obesity. J Nutr Biochem. 2019;64:228–36.

    Article  CAS  PubMed  Google Scholar 

  51. Patrone V, Vajana E, Minuti A, et al. Postoperative changes in fecal bacterial communities and fermentation products in obese patients undergoing bilio-intestinal bypass. Front Microbiol. 2016;7:200.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sen T, Cawthon CR, Ihde BT, et al. Diet-driven microbiota dysbiosis is associated with vagal remodeling and obesity. Physiol Behav. 2017;173:305–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hamer HM, Jonkers D, Venema K, et al. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther. 2008;27(2):104–19.

    Article  CAS  PubMed  Google Scholar 

  54. Graessler J, Qin Y, Zhong H, et al. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. Pharmacogenomics J. 2013;13(6):514–22.

    Article  CAS  PubMed  Google Scholar 

  55. Sanmiguel CP, Jacobs J, Gupta A, et al. Surgically induced changes in gut microbiome and hedonic eating as related to weight loss: preliminary findings in obese women undergoing bariatric surgery. Psychosom Med. 2017;79(8):880–7.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rodriguez-Hernandez AP, Marquez-Corona ML, Pontigo-Loyola AP, et al. Subgingival microbiota of Mexicans with type 2 diabetes with different periodontal and metabolic conditions. Int J Environ Res Public Health. 2019;16(17)

  57. Liu H, Pan LL, Lv S, et al. Alterations of gut microbiota and blood lipidome in gestational diabetes mellitus with hyperlipidemia. Front Physiol. 2019;10:1015.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ogawa T, Honda-Ogawa M, Ikebe K, et al. Characterizations of oral microbiota in elderly nursing home residents with diabetes. J Oral Sci. 2017;59(4):549–55.

    Article  PubMed  Google Scholar 

  59. Luo D, Chen K, Li J, et al. Gut microbiota combined with metabolomics reveals the metabolic profile of the normal aging process and the anti-aging effect of FuFang Zhenshu TiaoZhi(FTZ) in mice. Biomed Pharmacother. 2020;121:109550.

    Article  CAS  PubMed  Google Scholar 

  60. Pitcher MC, Beatty ER, Harris RM, et al. Sulfur metabolism in ulcerative colitis: investigation of detoxification enzymes in peripheral blood. Dig Dis Sci. 1998;43(9):2080–5.

    Article  CAS  PubMed  Google Scholar 

  61. Karlsson CL, Onnerfalt J, Xu J, et al. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity (Silver Spring). 2012;20(11):2257–61.

    Article  Google Scholar 

  62. Everard A, Lazarevic V, Derrien M, et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes. 2011;60(11):2775–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hansen CH, Krych L, Nielsen DS, et al. Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia. 2012;55(8):2285–94.

    Article  CAS  PubMed  Google Scholar 

  64. Shin NR, Lee JC, Lee HY, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut. 2014;63(5):727–35.

    Article  CAS  PubMed  Google Scholar 

  65. Haro C, Garcia-Carpintero S, Alcala-Diaz JF, et al. The gut microbial community in metabolic syndrome patients is modified by diet. J Nutr Biochem. 2016;27:27–31.

    Article  CAS  PubMed  Google Scholar 

  66. Wunderlichová L, Buňková L, Koutny M, Jancova P, Buňka F. Formation, degradation, and detoxification of putrescine by foodborne bacteria: a review 2014.

  67. Li JV, Reshat R, Wu Q, et al. Experimental bariatric surgery in rats generates a cytotoxic chemical environment in the gut contents. Front Microbiol. 2011;2:183.

    PubMed  PubMed Central  Google Scholar 

  68. Schwiertz A, Taras D, Schafer K, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity. 2010;18(1):190–5.

    Article  PubMed  Google Scholar 

  69. Zhang H, DiBaise JK, Zuccolo A, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A. 2009;106(7):2365–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liou AP, Paziuk M, Luevano Jr JM, et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5(178):178ra41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Selber-Hnatiw S, Sultana T, Tse W, et al. Metabolic networks of the human gut microbiota. Microbiology+. 2019;

  72. Salah M, Azab M, Ramadan A, et al. New insights on obesity and diabetes from gut microbiome alterations in Egyptian adults. Omics. 2019;23(10):477–85.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the Guangzhou Science and Technology Program (grant 201704020209) and the Medical Scientific Research Foundation of Guangdong Province (grant A2018408).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingge Yang, Cunchuan Wang or Shiqi Jia.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Figure 1

Alpha diversity analysis of all samples. (a) Shannon curves. X-axis represented the number of sequences sampled, y-axis represented Shannon index, and each curve represented a sample. (b) Species accumulation curve (at genus level). X-axis represented samples numbers, y-axis represented numbers of species detected in genus level (PNG 312 kb)

High resolution image (TIF 4604 kb)

ESM 1

(XLSX 16 kb)

ESM 2

(XLSX 33 kb)

ESM 3

(XLSX 14 kb)

ESM 4

(XLSX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Zhuang, J., Cui, Q. et al. Two Bariatric Surgical Procedures Differentially Alter the Intestinal Microbiota in Obesity Patients. OBES SURG 30, 2345–2361 (2020). https://doi.org/10.1007/s11695-020-04494-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-020-04494-4

Keywords

Navigation