Skip to main content
Log in

Relative Energy Expenditure Decreases during the First Year after Bariatric Surgery: A Systematic Review and Meta-Analysis

  • Review Article
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

The effect of bariatric surgery on resting energy expenditure (REE) remains unclear, particularly in terms of the REE/fat-free mass (FFM) ratio. We performed a systematic review with a meta-analysis on Roux-en-Y gastric bypass (RYGB) studies to investigate the effect of bariatric surgery on the REE/FFM ratio 6 and 12 months postoperatively. Five of the 13 records of 6-month data (n = 406) showed a reduction in the REE/FFM ratio without significant summary effects. As regards 12-month data (10 records, n = 713), there was a significant relative REE mean reduction of 1.95 kcal/kg in FFM (CI: −2.82 to −1.09; I2 = 28%; p < 0.00001). These findings suggest that bariatric surgery, specifically RYGB, leads to a decrease in the REE/FFM ratio during the first postoperative year, which may compromise long-term treatment outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hall KD, Heymsfield SB, Kemnitz JW, et al. Energy balance and its components: implications for body weight regulation. Am J Clin Nutr. 2012;95:989–94.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Westerterp KR. Control of energy expenditure in humans. Eur J Clin Nutr. 2017;71:340–4.

    Article  CAS  PubMed  Google Scholar 

  3. Doucet E, St-Pierre S, Alméras N, et al. Evidence for the existence of adaptive thermogenesis during weight loss. Br J Nutr. 2001;85:715–23.

    Article  CAS  PubMed  Google Scholar 

  4. Major GC, Doucet E, Trayhurn P, et al. Clinical significance of adaptive thermogenesis. Int J Obes. 2007;31:204–12.

    Article  CAS  Google Scholar 

  5. Kairupan TS, Amitani H, Cheng KC, et al. Role of gastrointestinal hormones in feeding behavior and obesity treatment. J Gastroenterol. 2016;51:93–103.

    Article  CAS  PubMed  Google Scholar 

  6. Timper K, Brüning JC. Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. Dis Model Mech. 2017;10:679–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yarmush ML, D’Alessandro M, Saeidi N. Regulation of energy homeostasis after gastric bypass surgery. Annu Rev Biomed Eng. 2017;19:459–84.

    Article  CAS  PubMed  Google Scholar 

  8. Li W, Richard D. Effects of bariatric surgery on energy homeostasis. Can J Diabetes. 2017;41:426–31.

    Article  PubMed  Google Scholar 

  9. Giusti V, Theytaz F, Di Vetta V, et al. Energy and macronutrient intake after gastric bypass for morbid obesity: a 3-y observational study focused on protein consumption. Am J Clin Nutr. 2016;103:18–24.

    Article  CAS  PubMed  Google Scholar 

  10. Dirksen C, Jørgensen NB, Bojsen-Møller KN, et al. Gut hormones, early dumping and resting energy expenditure in patients with good and poor weight loss response after roux-en-Y gastric bypass. Int J Obes. 2013;37:1452–9.

    Article  CAS  Google Scholar 

  11. Quercia I, Dutia R, Kotler DP, et al. Gastrointestinal changes after bariatric surgery. Diabetes Metab. 2014;40:87–94.

    Article  CAS  PubMed  Google Scholar 

  12. Manning S, Pucci A, Batterham RL. GLP-1: a mediator of the beneficial metabolic effects of bariatric surgery? Physiology. 2015;30:50–62.

    Article  CAS  PubMed  Google Scholar 

  13. de Oliveira BAP, de Souza Pinhel MA, Nicoletti CF, et al. UCP2 and PLIN1 expression affects the resting metabolic rate and weight loss on obese patients. Obes Surg. 2017;27:343–8.

    Article  PubMed  Google Scholar 

  14. Rabl C, Rao MN, Schwarz JM, et al. Thermogenic changes after gastric bypass, adjustable gastric banding or diet alone. Surgery. 2014;156:806–13.

    Article  PubMed  Google Scholar 

  15. Galtier F, Farret A, Verdier R, et al. Resting energy expenditure and fuel metabolism following laparoscopic adjustable gastric banding in severely obese women: relationships with excess weight lost. Int J Obes. 2006;30:1104–10.

    Article  CAS  Google Scholar 

  16. Hasani M, Mirahmadian M, Taheri E, et al. The effect of laparoscopic gastric plication surgery on body composition, resting energy expenditure, thyroid hormones, and physical activity in morbidly obese patients. Bariatr Surg Pract Patient Care. 2015;10:173–9.

    Article  Google Scholar 

  17. van Gemert WG, Westerterp KR, Greve JWM, et al. Reduction of sleeping metabolic rate after vertical banded gastroplasty. Int J Obes. 1998;22:343–8.

    Article  Google Scholar 

  18. van Gemert WG, Westerterp KR, van Acker BA, et al. Energy, substrate and protein metabolism in morbid obesity before, during and after massive weight loss. Int J Obes. 2000;24:711–8.

    Article  CAS  Google Scholar 

  19. Bosy-Westphal A, Kossel E, Goele K, et al. Contribution of individual organ mass loss to weight loss-associated decline in resting energy expenditure. Am J Clin Nutr. 2009;90:993–1001.

    Article  CAS  PubMed  Google Scholar 

  20. Nelson KM, Weinsier RL, Long CL, et al. Prediction of resting energy from fat-free mass. Am J Clin Nutr. 1992;56:848–56.

    Article  CAS  PubMed  Google Scholar 

  21. Browning MG, Franco RL, Cyrus JC, et al. Changes in resting energy expenditure in relation to body weight and composition following gastric restriction: a systematic review. Obes Surg. 2016;26:1607–15.

    Article  PubMed  Google Scholar 

  22. Liberati A, Altman DG, Tetzlaff J, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6:e1000100.

    Article  PubMed  PubMed Central  Google Scholar 

  23. McGowan J, Sampson M, Salzwedel DM, et al. PRESS peer review of electronic search strategies: 2015 guideline statement. J Clin Epidemiol. 2016;75:40–6.

    Article  PubMed  Google Scholar 

  24. Covidence systematic review software. Veritas Health Innovation: Melbourne, Australia. Available from: www.covidence.org

  25. The Joanna Briggs Institute. The Joanna Briggs Institute critical appraisal tools for use in JBI systematic reviews checklist for cohort studies.. Adelaide, Australia: The Joanna Briggs Institute; 2017.

  26. Review Manager (RevMan) [Computer program]. Version 5.3. Copenhagen: The Nordic Cochrane Centre: The Cochrane Collaboration; 2014. Available from: https://community.cochrane.org/help/tools-and-software/revman-5

  27. Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011.

  28. Faria SL, Faria OP, Buffington C, et al. Energy expenditure before and after roux-en-Y gastric bypass. Obes Surg. 2012;22:1450–5.

    Article  PubMed  Google Scholar 

  29. Moehlecke M, Andriatta Blume C, Rheinheimer J, et al. Early reduction of resting energy expenditure and successful weight loss after roux-en-Y gastric bypass. Surg Obes Relat Dis. 2017;13:204–9.

    Article  PubMed  Google Scholar 

  30. Oliveira BAP, Pinhel MAS, Nicoletti CF, et al. UCP1 and UCP3 expression is associated with lipid and carbohydrate oxidation and body composition. PLoS One. 2016;11:1–11.

    Google Scholar 

  31. de Cleva R, Mota FC, Gadducci AV, et al. Resting metabolic rate and weight loss after bariatric surgery. Surg Obes Relat Dis. 2018;14:803–7.

    Article  PubMed  Google Scholar 

  32. Carrasco F, Papapietro K, Csendes A, et al. Changes in resting energy expenditure and body composition after weight loss following roux-en-Y gastric bypass. Obes Surg. 2007;17:608–16.

    Article  PubMed  Google Scholar 

  33. Carrasco F, Rojas P, Ruz M, et al. Gasto energético y composición corporal en mujeres con obesidad severa y mórbida sometidas a bypass gástrico. Rev Med Chil. 2008;136:570–7.

    PubMed  Google Scholar 

  34. Simonen M, Dali-Youcef N, Kaminska D, et al. Conjugated bile acids associate with altered rates of glucose and lipid oxidation after roux-en-Y gastric bypass. Obes Surg. 2012;22:1473–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Coupaye M, Bouillot JL, Coussieu C, et al. One-year changes in energy expenditure and serum leptin following adjustable gastric banding in obese women. Obes Surg. 2005;15:827–33.

    Article  PubMed  Google Scholar 

  36. Sans A, Bailly L, Anty R, et al. Baseline anthropometric and metabolic parameters correlate with weight loss in women 1-year after laparoscopic roux-En-Y gastric bypass. Obes Surg. 2017;27:2940–9.

    Article  PubMed  Google Scholar 

  37. Busetto L, Perini P, Giantin V, et al. Relationship between energy expenditure and visceral fat accumulation in obese women submitted to adjustable silicone gastric banding (ASGB). Int J Obes. 1995;19:227–33.

    CAS  Google Scholar 

  38. Adami GF, Campostano A, Gandolfo P, et al. Body composition and energy expenditure in obese patients prior to and following biliopancreatic diversion for obesity. Eur Surg Res. 1996;28:295–8.

    Article  CAS  PubMed  Google Scholar 

  39. Tacchino RM, Mancini A, Perrelli M, et al. Body composition and energy expenditure: relationship and changes in obese subjects before and after biliopancreatic diversion. Metabolism. 2003;52:552–8.

    Article  CAS  PubMed  Google Scholar 

  40. Bettini S, Bordigato E, Fabris R, et al. Modifications of resting energy expenditure after sleeve gastrectomy. Obes Surg. 2018;28:2481–6.

    Article  PubMed  Google Scholar 

  41. Algahim MF, Lux TR, Leichman JG, et al. Progressive regression of left ventricular hypertrophy two years after bariatric surgery. Am J Med. 2010;123:549–55.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Carey DG, Pliego GJ, Raymond RL. Body composition and metabolic changes following bariatric surgery: effects on fat mass, lean mass and basal metabolic rate: six months to one-year follow-up. Obes Surg. 2006;16:1602–8.

    Article  PubMed  Google Scholar 

  43. Wilms B, Ernst B, Thurnheer M, et al. Resting energy expenditure after roux-en Y gastric bypass surgery. Surg Obes Relat Dis. 2018;14:191–9.

    Article  PubMed  Google Scholar 

  44. Golzarand M, Toolabi K, Djafarian K. Changes in body composition, dietary intake, and substrate oxidation in patients underwent laparoscopic roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: a comparative prospective study. Obes Surg. 2019;29:406–13.

    Article  PubMed  Google Scholar 

  45. Chakravarty PD, McLaughlin E, Whittaker D, et al. Comparison of laparoscopic adjustable gastric banding (LAGB) with other bariatric procedures; a systematic review of the randomised controlled trials. Surgeon. 2012;10:172–82.

    Article  CAS  PubMed  Google Scholar 

  46. Kang JH, Le QA. Effectiveness of bariatric surgical procedures: a systematic review and network meta-analysis of randomized controlled trials. Medicine (Baltimore). 2017;96:12–4.

    Google Scholar 

  47. Leibel RL, Rosenbaum M, Hirsch J. Changes in energy expenditure resulting from altered body weight. N Engl J Med. 1995;332:621–8.

    Article  CAS  PubMed  Google Scholar 

  48. Weigle DS, Sande KJ, Iverius PH, et al. Weight loss leads to a marked decrease in nonresting energy expenditure in ambulatory human subjects. Metabolism. 1988;37:930–6.

    Article  CAS  PubMed  Google Scholar 

  49. Wang Z, Heshka S, Gallagher D, et al. Resting energy expenditure-fat-free mass relationship: new insights provided by body composition modeling. Am J Physiol Metab. 2000;279:E539–45.

    CAS  Google Scholar 

  50. Valtueña S, Blanch S, Barenys M, et al. Changes in body composition and resting energy expenditure after rapid weight loss: is there an energy-metabolism adaptation in obese patients? Int J Obes Relat Metab Disord. 1995;19:119–25.

    PubMed  Google Scholar 

  51. Weinsier RL, Nagy TR, Hunter GR, et al. Do adaptive changes in metabolic rate favor weight regain in weight-reduced individuals? An examination of the set-point theory. Am J Clin Nutr. 2000;72:1088–94.

    Article  CAS  PubMed  Google Scholar 

  52. Bosy-Westphal A, Müller MJ, Boschmann M, et al. Grade of adiposity affects the impact of fat mass on resting energy expenditure in women. Br J Nutr. 2009;101:474–7.

    Article  CAS  PubMed  Google Scholar 

  53. Calbet JAL, Ponce-gonzález JG, de La C-h J, et al. Exercise preserves lean mass and performance during severe energy deficit: the role of exercise volume and dietary protein content. Front Physiol. 2017;8:1–13.

    Article  Google Scholar 

  54. Celis-morales CA, Petermann F, Steell L, et al. Associations of dietary protein intake with fat-free mass and grip strength: a cross-sectional study in 146,816 UK Biobank participants. Am J Epidemiol. 2018;187:2405–14.

    Article  PubMed  Google Scholar 

  55. Geisler C, Braun W, Pourhassan M, et al. Age-dependent changes in resting energy expenditure (REE): insights from detailed body composition analysis in normal and overweight healthy Caucasians. Nutrients. 2016;8:1–11.

    Article  CAS  Google Scholar 

  56. Ren ZQ, Lu GD, Zhang TZ, et al. Effect of physical exercise on weight loss and physical function following bariatric surgery: a meta-analysis of randomised controlled trials. BMJ Open. 2018;8:e023208.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ito MK, Gonçalves VSS, Faria SLCM, et al. Effect of protein intake on the protein status and lean mass of post-bariatric surgery patients: a systematic review. Obes Surg Obesity Surgery. 2017;27:502–12.

    Article  PubMed  Google Scholar 

  58. Raftopoulos I, Bernstein B, O’Hara K, et al. Protein intake compliance of morbidly obese patients undergoing bariatric surgery and its effect on weight loss and biochemical parameters. SOARD. 2011;7:733–42.

    Google Scholar 

  59. Moizé V, Andreu A, Rodríguez L, et al. Protein intake and lean tissue mass retention following bariatric surgery. Clin Nutr. 2013;32:550–5.

    Article  PubMed  CAS  Google Scholar 

  60. Aron-Wisnewsky J, Verger EO, Bounaix C, et al. Nutritional and protein deficiencies in the short term following both gastric bypass and gastric banding. PLoS One. 2016;11:e0149588.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We are particularly thankful to Ananda Araújo, Larissa Valadares, Roberta Borges, and Vivian S.S. Gonçalves for reviewing the manuscript based on the Peer Review of Electronic Search Strategies (PRESS) guidelines.

Author information

Authors and Affiliations

Authors

Contributions

Fernando Lamarca, Eliane Said Dutra and Kênia Mara Baiocchi de Carvalho wrote the protocol and designed the study. Fernando Lamarca and Mariana Silva Melendez Araújo conducted literature searches, study selection, data collection, data analysis, and manuscript preparation. Isabela Porto de Toledo contributed to literature searches, data analysis, and figure and table conception. All authors reviewed the manuscript and approved the version to be submitted.

Corresponding author

Correspondence to Kênia Mara Baiocchi de Carvalho.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent Statement

Not applicable to this type of study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 2 Search strategy and date search was performed in the chosen databases

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamarca, F., Melendez-Araújo, M.S., Porto de Toledo, I. et al. Relative Energy Expenditure Decreases during the First Year after Bariatric Surgery: A Systematic Review and Meta-Analysis. OBES SURG 29, 2648–2659 (2019). https://doi.org/10.1007/s11695-019-03934-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-019-03934-0

Keywords

Navigation