Obesity Surgery

, Volume 29, Issue 7, pp 2115–2125 | Cite as

Effects of Bariatric Surgery in Male Obesity-Associated Hypogonadism

  • Fernanda Augustini Rigon
  • Marcelo Fernando Ronsoni
  • Alexandre Hohl
  • Simone van de Sande-LeeEmail author
Original Contributions



The prevalence of obesity has grown exponentially over the last several decades. Research has linked male obesity to changes in the gonadal axis, which can induce functional hypogonadism. Bariatric surgery provides sustained weight loss and metabolic improvement. This was a retrospective cohort study to evaluate the male gonadal axis and metabolic profiles of obese individuals during the bariatric pre- and post-operative periods while comparing them to a normal body mass index (BMI) group.


Twenty-nine obese men, who underwent bariatric surgery between 2012 and 2016 at the Federal University of Santa Catarina Hospital and a control group (CG) of 29 age-matched men with normal BMI, were analyzed. Bariatric pre- and 6-month post-operative data were compared with the CG.


The study group (G1) presented an average age, weight, and BMI of 42.8 ± 9.5 years, 155.2 ± 25.8 kg, and 50.6 ± 7.1 kg/m2, respectively. The pre-operative total testosterone (TT) G1 values were different from the CG (229.5 ± 96.4 versus 461.5 ± 170.8 ng/dL, p < 0.01). Bariatric surgery promoted a statistically significant improvement in weight, TT, and metabolic profiles in surgical patients.


Functional hypogonadism is prevalent in obese men, and we must be aware of this diagnosis. Although studies defining the best diagnostic parameters and indication of adequate hormone replacement therapy are lacking, an increase in TT levels during the first 6 months after bariatric surgery was identified in our study. Previous studies have shown that gonadal function can normalize after metabolic improvement.


Obesity Testosterone Bariatric surgery Hypogonadism 



This article has no grant support.

Compliance with Ethical Standards

The study protocol was approved by the ethics committee and institutional review at Federal University of Santa Catarina and was compliant with the Helsinki Declaration. Informed consent was obtained from all participants.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Finucane MM, Stevens GA, Cowan MJ, et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9·1 million participants. Lancet. 2011;377(9765):557–67.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384(9945):766–81.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    The GBD 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377(1):13–27.CrossRefGoogle Scholar
  4. 4.
    Whitlock G, Lewington S, Sherliker P, et al. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet. 2009;373(9669):1083–96.CrossRefPubMedGoogle Scholar
  5. 5.
    Ezzati M, Lopez AD, Rodgers A, et al. Selected major risk factors and global and regional burden of disease. Lancet. 2002;360(9343):1347–60.CrossRefPubMedGoogle Scholar
  6. 6.
    World Health Organization. Global health risks: mortality and burden of disease attributable to selected major risks. Geneva: World Health Organization; 2009. 62 pGoogle Scholar
  7. 7.
    Corona G, Monami M, Boddi V, et al. Male sexuality and cardiovascular risk. A cohort study in patients with erectile dysfunction. J Sex Med. 2010;7(5):1918–27.CrossRefPubMedGoogle Scholar
  8. 8.
    Saboor Aftab SA, Kumar S, Barber TM. The role of obesity and type 2 diabetes mellitus in the development of male obesity-associated secondary hypogonadism. Clin Endocrinol. 2013;78(3):330–7.CrossRefGoogle Scholar
  9. 9.
    Dandona P, Dhindsa S, Chaudhuri A, et al. Hypogonadotrophic hypogonadism in type 2 diabetes, obesity and the metabolic syndrome. Curr Mol Med. 2008;8(8):816–28.CrossRefPubMedGoogle Scholar
  10. 10.
    Giagulli VA, Kaufman JM, Vermeulen A. Pathogenesis of the decreased androgen levels in obese men. J Clin Endocrinol Metab. 1994;79(4):997–1000.PubMedGoogle Scholar
  11. 11.
    Kelly DM, Jones TH. Testosterone and obesity: testosterone and obesity. Obes Rev. 2015;16(7):581–606.CrossRefPubMedGoogle Scholar
  12. 12.
    Dhindsa S, Miller MG, McWhirter CL, et al. Testosterone concentrations in diabetic and nondiabetic obese men. Diabetes Care. 2010;33(6):1186–92.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tajar A, Forti G, O’Neill TW, et al. Characteristics of secondary, primary, and compensated hypogonadism in aging men: evidence from the European male ageing study. J Clin Endocrinol Metab. 2010;95(4):1810–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Corona G, Monami M, Rastrelli G, et al. Testosterone and metabolic syndrome: a meta-analysis study. J Sex Med. 2011;8(1):272–83.CrossRefPubMedGoogle Scholar
  15. 15.
    Araujo AB, Dixon JM, Suarez EA, et al. Endogenous testosterone and mortality in men: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2011;96(10):3007–19.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hohl A, Ronsoni MF. Male hypogonadism in: endocrinology and diabetes—a problem-oriented approach, vol. 1. 1a ed. New York: Springer; 2014. p. 173–92.Google Scholar
  17. 17.
    Reis LO, Favaro WJ, Barreiro GC, et al. Erectile dysfunction and hormonal imbalance in morbidly obese male is reversed after gastric bypass surgery: a prospective randomized controlled trial: erectile dysfunction and morbidly obese male. Int J Androl. 2010;33(5):736–44.CrossRefPubMedGoogle Scholar
  18. 18.
    Tuomilehto J, Lindström J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344(18):1343–50.CrossRefPubMedGoogle Scholar
  19. 19.
    Yamaoka K, Tango T. Efficacy of lifestyle education to prevent type 2 diabetes: a meta-analysis of randomized controlled trials. Diabetes Care. 2005;28(11):2780–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Gillies CL, Abrams KR, Lambert PC, et al. Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. BMJ. 2007;334(7588):299.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Pekkarinen T, Kaukua J, Mustajoki P. Long-term weight maintenance after a 17-week weight loss intervention with or without a one-year maintenance program: a randomized controlled trial. J Obes. 2015;2015:1–10.CrossRefGoogle Scholar
  22. 22.
    Anderson JW, Konz EC, Frederich RC, et al. Long-term weight-loss maintenance: a meta-analysis of US studies. Am J Clin Nutr. 2001;74(5):579–84.CrossRefPubMedGoogle Scholar
  23. 23.
    Stanik S, Dornfeld LP, Maxwell MH, et al. The effect of weight loss on reproductive hormones in obese men*. J Clin Endocrinol Metab. 1981;53(4):828–32.CrossRefPubMedGoogle Scholar
  24. 24.
    Pasquali R, Casimirri F, Melchionda N, et al. Weight loss and sex steroid metabolism in massively obese man. J Endocrinol Investig. 1988;11(3):205–10.CrossRefGoogle Scholar
  25. 25.
    Strain GW, Zumoff B, Miller LK, et al. Effect of massive weight loss on hypothalamic pituitary-gonadal function in obese men*. J Clin Endocrinol Metab. 1988;66(5):1019–23.CrossRefPubMedGoogle Scholar
  26. 26.
    Niskanen L, Laaksonen DE, Punnonen K, et al. Changes in sex hormone-binding globulin and testosterone during weight loss and weight maintenance in abdominally obese men with the metabolic syndrome. Diabetes Obes Metab. 2004;6(3):208–15.CrossRefPubMedGoogle Scholar
  27. 27.
    Heufelder AE, Saad F, Bunck MC, et al. Fifty-two-week treatment with diet and exercise plus transdermal testosterone reverses the metabolic syndrome and improves glycemic control in men with newly diagnosed type 2 diabetes and subnormal plasma testosterone. J Androl. 2009;30(6):726–33.CrossRefPubMedGoogle Scholar
  28. 28.
    Khoo J, Piantadosi C, Worthley S, et al. Effects of a low-energy diet on sexual function and lower urinary tract symptoms in obese men. Int J Obes. 2010;34(9):1396–403.CrossRefGoogle Scholar
  29. 29.
    Volek JS, Sharman MJ, Love DM, et al. Body composition and hormonal responses to a carbohydrate-restricted diet. Metabolism. 2002;51(7):864–70.CrossRefPubMedGoogle Scholar
  30. 30.
    Khoo J, Piantadosi C, Duncan R, et al. Comparing effects of a low-energy diet and a high-protein low-fat diet on sexual and endothelial function, urinary tract symptoms, and inflammation in obese diabetic men. J Sex Med. 2011;8(10):2868–75.CrossRefPubMedGoogle Scholar
  31. 31.
    Klibanski A, Beitins IZ, Badger T, et al. Reproductive function during fasting in men*. J Clin Endocrinol Metab. 1981;53(2):258–63.CrossRefPubMedGoogle Scholar
  32. 32.
    Maciejewski ML, Arterburn DE, Van Scoyoc L, et al. Bariatric surgery and long-term durability of weight loss. JAMA Surg. 2016;151(11):1046–55.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Puzziferri N, Roshek TB, Mayo HG, et al. Long-term follow-up after bariatric surgery: a systematic review. JAMA. 2014;312(9):934–42.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Diamantis T, Apostolou KG, Alexandrou A, et al. Review of long-term weight loss results after laparoscopic sleeve gastrectomy. Surg Obes Relat Dis. 2014;10(1):177–83.CrossRefPubMedGoogle Scholar
  35. 35.
    Svetkey LP. Comparison of strategies for sustaining weight loss. The weight loss maintenance randomized controlled trial. JAMA. 2008;299(10):1139–48.CrossRefPubMedGoogle Scholar
  36. 36.
    Corona G, Rastrelli G, Monami M, et al. Body weight loss reverts obesity-associated hypogonadotropic hypogonadism: a systematic review and meta-analysis. Eur J Endocrinol. 2013;168(6):829–43.CrossRefPubMedGoogle Scholar
  37. 37.
    Yip S, Plank LD, Murphy R. Gastric bypass and sleeve gastrectomy for type 2 diabetes: a systematic review and meta-analysis of outcomes. Obes Surg. 2013;23(12):1994–2003.CrossRefPubMedGoogle Scholar
  38. 38.
    Aarts E, van Wageningen B, Loves S, et al. Gonadal status and outcome of bariatric surgery in obese men. Clin Endocrinol. 2014;81(3):378–86.CrossRefGoogle Scholar
  39. 39.
    Pellitero S, Olaizola I, Alastrue A, et al. Hypogonadotropic hypogonadism in morbidly obese males is reversed after bariatric surgery. Obes Surg. 2012;22(12):1835–42.CrossRefPubMedGoogle Scholar
  40. 40.
    Calderón B, Galdón A, Calañas A, et al. Effects of bariatric surgery on male obesity-associated secondary hypogonadism: comparison of laparoscopic gastric bypass with restrictive procedures. Obes Surg. 2014;24:1686–92.CrossRefPubMedGoogle Scholar
  41. 41.
    Ministério da Saúde. PORTARIA No 424, DE 19 DE MARÇO DE 2013. Redefine as diretrizes para a organização da prevenção e do tratamento do sobrepeso e obesidade como linha de cuidado prioritária da Rede de Atenção à Saúde das Pessoas com Doenças Crônicas. [Internet]. Poder Executivo, Brasília, DF.; [citado 13 de maio de 2018]. Disponível em:
  42. 42.
    Vermeulen A, Verdonck L, Kaufman JM. A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab. 1999;84(10):3666–72.Google Scholar
  43. 43.
    Bhasin S, Brito JP, Cunningham GR, et al. Testosterone therapy in men with hypogonadism: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2018;103(5):1715–44.CrossRefPubMedGoogle Scholar
  44. 44.
    Anawalt BD, Hotaling JM, Walsh TJ, et al. Performance of total testosterone measurement to predict free testosterone for the biochemical evaluation of male hypogonadism. J Urol. 2012;187(4):1369–73.CrossRefPubMedGoogle Scholar
  45. 45.
    Organização Mundial de Saúde - OMS. Physical status: the use and interpretation of anthropometry [Internet]. Geneva: WHO; 1995. Disponível em: Google Scholar
  46. 46.
    Dandona P, Dhindsa S. Update: hypogonadotropic hypogonadism in type 2 diabetes and obesity. J Clin Endocrinol Metab. 2011;96(9):2643–51.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Hammoud A, Gibson M, Hunt SC, et al. Effect of Roux-en-Y gastric bypass surgery on the sex steroids and quality of life in obese men. J Clin Endocrinol Metab. 2009;94(4):1329–32.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Isidori AM, Caprio M, Strollo F, et al. Leptin and androgens in male obesity: evidence for leptin contribution to reduced androgen levels. J Clin Endocrinol Metab. 1999;84(10):3673–80.PubMedGoogle Scholar
  49. 49.
    Boonchaya-anant P, Laichuthai N, Suwannasrisuk P, et al. Changes in testosterone levels and sex hormone-binding globulin levels in extremely obese men after bariatric surgery. Int J Endocrinol. 2016;2016:1–5.CrossRefGoogle Scholar
  50. 50.
    Saad F, Yassin A, Doros G, et al. Effects of long-term treatment with testosterone on weight and waist size in 411 hypogonadal men with obesity classes I-III: observational data from two registry studies. Int J Obes. 2016;40(1):162–70.CrossRefGoogle Scholar
  51. 51.
    Zumoff B, Miller LK, Strain GW. Reversal of the hypogonadotropic hypogonadism of obese men by administration of the aromatase inhibitor testolactone. Metabolism. 2003;52(9):1126–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Loves S, Ruinemans-Koerts J, de Boer H. Letrozole once a week normalizes serum testosterone in obesity-related male hypogonadism. Eur J Endocrinol. 2008;158(5):741–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Serviço de Endocrinologia e MetabologiaHospital Universitário Polydoro Ernani de São Thiago (HU-UFSC)FlorianópolisBrazil
  2. 2.Departamento de Clínica Médica, Hospital Universitário, 3 andarUniversidade Federal de Santa Catarina (UFSC)FlorianópolisBrazil

Personalised recommendations