Bone Metabolism in Adolescents and Adults Undergoing Roux-En-Y Gastric Bypass: a Comparative Study

  • Débora Santos
  • Tais Lopes
  • Patrícia Jesus
  • Sabrina CruzEmail author
  • Adryana Cordeiro
  • Silvia Pereira
  • Carlos Saboya
  • Andréa Ramalho
Original Contributions



To compare the bone metabolism of adolescents and adults with obesity before undergoing a Roux-en-Y gastric bypass (RYGB) and 6 and 12 months after the surgery.

Materials and Methods

Adolescents (G1) and adults (G2) with obesity assessed before (T0), six (T1), and 12 months after (T2) RYGB. Sun exposure, serum concentrations of 25(OH)D, calcium, phosphorous, magnesium, zinc, alkaline phosphatase, parathyroid hormone (PTH), and bone mineral density (BMD) were evaluated.


Sixty adolescents and 60 adults were assessed. At T0, there was no significant difference between the groups’ serum 25(OH)D levels (G1 21.87 + 7.52 ng/mL, G2 21.73 + 7.60 ng/mL, p = 0.94) or sun exposure (G1 17 ± 2.0 min/day, G2 13.2 ± 5.2 min/day, p = 0.85). G1 had high levels of inadequacy of calcium (66.7%), phosphorous (80.0%), and zinc (18.3%) at T0 and had a significant fall in their 25(OH)D (p < 0.01) and magnesium (p < 0.01) levels from T1 to T2. G2 saw a significant lowering of their serum zinc levels from T0 to T1 and T2 (T1 p < 0.01; T2 p < 0.01). In both groups, there was a significant rise in PTH from T1 to T2 (G1 p = 0.04, G2 p = 0.02) and from T0 to T2 (G1 and G2 p < 0.01). In G2, 40.4% of individuals with osteopenia and osteoporosis presented inadequacy of 25(OH)D.


RYGB was found to worsen the inadequacy of micronutrients related to bone metabolism and was associated with secondary hyperparathyroidism and low BMD values, especially among the adolescents. The irreversible damaging effects of obesity on bone metabolism can occur in adolescence.


Obesity Adolescents Adults Bone metabolism Roux-en-Y gastric bypass 


Funding Information

The different stages of this study are funded by the Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Fleming T et al. Global, regional and national prevalence of overweight and obesity in children and adults 1980-2013: a systematic analysis. Lancet. 2014;384(9945):766–81.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Torres KP et al. Riscos cardiovasculares em adolescentes com diferentes graus de obesidade. Arq Bras Cardiol. 2011;97(2):179–80.PubMedGoogle Scholar
  3. 3.
    Apovian CM. The obesity epidemic — understanding the disease and the treatment. N Engl J Med. 2016;374(2):177–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Chaplais E, Dutheil F, Naughton G, et al. Cross-sectional and longitudinal study protocols of the “Adiposity and Bone metabolism: effects of exercise-induced weight loss in obese adolescents” (ADIBOX) project. BMJ Open. 2016;6(10):e011407.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Angrisani L et al. Bariatric surgery and endoluminal procedures: IFSO worldwide survey 2014. Obes Surg. 2017;27(9):2279–89.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sociedade Brasileira de Cirurgia Bariátrica E Metabólica (SBCBM). Técnicas Cirúrgicas.Availableat: Accessed 12 Oct 2016.
  7. 7.
    Adeboye B et al. Obesity and its health impact in Africa: a systematic review. Cardiovasc J Afr. 2012;23(9):512–21.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Piché ME et al. How to choose and use bariatric surgery in 2015. Can J Cardiol. 2015;31(2):153–66.CrossRefPubMedGoogle Scholar
  9. 9.
    Gagnon C, Schafer AL. Bone health after bariatric surgery. JBMR Plus. 2018;2(3):121–33.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Faé C et al. Deficiência de nutrientes a longo prazo no pós-operatório de cirurgia bariátrica – revisão sistemática. SaBios. 2015;10(2):46–53.Google Scholar
  11. 11.
    Miller GD et al. Changes in nutrients and food groups intakes following laparoscopic Roux-en-Y gastric bypass (RYGB). Obes Surg. 2014;24(11):1926–32.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bordalo LA et al. Nutritional deficiencies after bariatric surgery: why they happen. Acta Médica Port. 2011;24(4):1021–8.Google Scholar
  13. 13.
    Lo Menzo E et al. Nutritional implications of obesity: before and after bariatric surgery. Bariatr Surg Pract Patient Care. 2014;9(1):9–17.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Torezan EFG. Revisão das principais deficiências de micronutrientes no pós-operatório do Bypass Gástrico em Y de Roux. Int J Nutrology. 2013;6(1):37–42.Google Scholar
  15. 15.
    dos Santos MT et al. Alterações de parâmetros relacionados ao metabolismo ósseo em mulheres submetidas à derivação gástrica em Y de Roux. Arq Bras Endocrinol Metab. 2012;56(6):376–82.CrossRefGoogle Scholar
  16. 16.
    Abegg K et al. Roux-en-Y gastric bypass surgery reduces bone mineral density and induces metabolic acidosis in rats. Am J Physiol Regul Integr Com Physiol. 2013;305(9):R999–R1009.CrossRefGoogle Scholar
  17. 17.
    Stein EM et al. Bariatric surgery results in cortical bone loss. J Clin Endocrinol Metab. 2013;98(2):541–9.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Yu EW. Bone metabolism after bariatric surgery. JJ Bone Miner Res. 2014;29(7):1507–18.CrossRefGoogle Scholar
  19. 19.
    Tandon N et al. Growth from birth to adulthood and peak bone mass and density data from the New Delhi birth cohort. Osteoporos Int. 2012;23(10):2447–59.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    World Health Organization (WHO) Global health risks: mortality and burden of disease attributable to selected major risks. [S.l: s.n.], 2009. Available at: Accessed 14 Oct 2016.
  21. 21.
    Maeda SS et al. Recomendações da Sociedade Brasileira de Endocrinologia e Metabologia (SBEM) para diagnóstico e tratamento da hipovitaminose D. Arq Bras Endocrinol Metabo. 2014;58(5):411–33.CrossRefGoogle Scholar
  22. 22.
    Tanner JM. Growth at adolescence. 2nd ed. Oxford: Blackwell Scientific Publications; 1962.Google Scholar
  23. 23.
    World Health Organization (WHO). Obesity: Preventing and Managing the Global Epidemic. Geneva, 2000. Available at: Accessed 14 Oct 2016.
  24. 24.
    Ramalle-Gómara E et al. Validez de las medidas autodeclaradas de peso y talla en la estimación de la prevalencia de obesidad. Med Clin. 1997;108(18):108–716.Google Scholar
  25. 25.
    Quételet A. Antropométrie ou mesure desdifférentes facultés de l'homme. Bruxelles: C. Muquardt; 1870.Google Scholar
  26. 26.
    Dorsey JG. Introduction to modern liquid chromatography. J Am Chem Soc. 2010;132:9220.CrossRefGoogle Scholar
  27. 27.
    Holick MF et al. Guidelines for preventing and treating vitamin D deficiency and insufficiency revisited. J Clin Endocrinol Metab. 2012;97(4):1153–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Koletzko, B., et al. Pediatric Nutrition in Practice. 2nd ed. Munich; vol 113, 2008.Google Scholar
  29. 29.
    World Health Organization (WHO). Trace Element in Human Nutrition. Geneva, 1996. Available at: Accessed 23 Oct 2016.
  30. 30.
    Daly JA, Ertingshausen G. Direct method for determining inorganic phosphate in serum with the “CentrifiChem”. Clin Chem. 1972;18(3):263–5.PubMedGoogle Scholar
  31. 31.
    Mann CK, Yoe JH. Spectrophotometric determination of magnesium with sodium1-Azo-2-hydroxy-3-(2,4-dimethylcarboxanilido)-naphthalene-1′-(2 hydroxybenzene-5-sulfonate). Anal Chem. 1956;28(2):202–5.CrossRefGoogle Scholar
  32. 32.
    Bramer JAM et al. Pre- and post-chemotherapy alkaline phosphatase levels as prognostic indicators in adults with localised osteosarcoma. Eur J Cancer. 2005;41(18):2846–52.CrossRefPubMedGoogle Scholar
  33. 33.
    Iyengar V, Woittiez J. Trace elements in human clinical specimens: evaluation of literature data to identify reference values. Clin Chem. 1988;34:474–81.PubMedGoogle Scholar
  34. 34.
    Kao PC. Parathyroid hormone assay. Mayo Clin Proc. 1982;57:596–7.PubMedGoogle Scholar
  35. 35.
    Beamish AJ, Gronowitz E, Olbers T, et al. Body composition and bone health in adolescents after Roux-en-Y gastric bypass for severe obesity. Pediatric Obesity. 2016;12(3):239–46.CrossRefPubMedGoogle Scholar
  36. 36.
    Rinaldi DB, Frankenberg AD. The effect of calcium intake on weight loss and body composition: a review of randomized clinical trials. RASBRAN. 2016;Google Scholar
  37. 37.
    Hanwell HE et al. Sun exposure questionnaire predicts circulating 25-hydroxyvitamin D concentrations in Caucasian hospital workers in southern Italy. J Steroid Biochem Mol Biol. 2010;121:334–7.CrossRefPubMedGoogle Scholar
  38. 38.
    World Health Organization (WHO). WHO Scientific Group on the assessment of osteoporosis at primary health care level. Brussels, 2004.Google Scholar
  39. 39.
    Brasil. Comissão Nacional de Ética em Pesquisa. Conselho Nacional De Saúde. Resolução no. 196/96 versão 2012. Brasília, 2012. Available at: Accessed 21 Oct 2016.x.
  40. 40.
    Stagi S et al. Bone metabolism in children and adolescents: main characteristics of the determinants of peak bone mass. Clin Cases Miner Bone Metab. 2013;10(3):172–9.PubMedGoogle Scholar
  41. 41.
    Bonjour J, Chevalley T. Pubertal timing, bone acquisition, and risk of fracture throughout life. Endocr Rev. 2014;35(5):820–47.CrossRefPubMedGoogle Scholar
  42. 42.
    Sakhaee K et al. The effects of bariatric surgery on bone and nephrolithiasis. Bone. 2016;84:1–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Raoof M et al. Effect of gastric bypass on bone mineral density, parathyroid hormone and vitamin D: 5 years follow-up. Obes Surg. 2016;26:1141–5.CrossRefPubMedGoogle Scholar
  44. 44.
    Sánchez A et al. Micronutrient deficiencies in morbidly obese women prior to bariatric surgery. Obes Surg. 2016;26:361–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Lefebvre P et al. Nutrient deficiencies in patients with obesity considering bariatric surgery: a cross-sectional study. Surg Obes Relat Dis. 2014;10(3):540–6.CrossRefPubMedGoogle Scholar
  46. 46.
    Oliveira RMS et al. Association of vitamin D insufficiency with adiposity and metabolic disorders in Brazilian adolescents. Public Health Nutr. 2013;17(4):787–94.CrossRefPubMedGoogle Scholar
  47. 47.
    Touvier M et al. Determinants of vitamin D status in Caucasian adults: influence of sun exposure, dietary intake, sociodemographic, lifestyle, anthropometric, and genetic factors. J Investig Dermatol. 2015;135:1–11.CrossRefGoogle Scholar
  48. 48.
    Rousseau C, Jean S, Gamache P, et al. Change in fracture risk and fracture pattern after bariatric surgery: nested case-control study. BMJ. 2016;354:i3794.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lalmohamed A, de Vries F, Bazelier MT, et al. Risk of fracture after bariatric surgery in the United Kingdom: population based, retrospective cohort study. BMJ. 2012;345:e5085.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Researcher of the Center for Research on Micronutrients (NPqM) of the Institute of Nutrition Josué de Castro of Federal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
  2. 2.School of Medicine at Federal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
  3. 3.Multidisciplinary Center for Bariatric and Metabolic SurgerySchool of Medicine of Federal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
  4. 4.Researcher of the NPqM at Federal University of Rio de Janeiro(UFRJ)Rio de JaneiroBrazil
  5. 5.Federal University of São Paulo (UNIFESP)São PauloBrazil
  6. 6.Department of Social and Applied Nutrition of the Institute of Nutrition at UFRJ. Coordinator of the Center for Research on Micronutrients (NPqM) of the Institute of Nutrition Josué de Castro of UFRJRio de JaneiroBrazil

Personalised recommendations