Bone Health in Patients with Type 2 Diabetes Treated by Roux-En-Y Gastric Bypass and the Role of Diabetes Remission

Abstract

Background

Roux-en-Y gastric bypass (RYGB) has been associated with negative effects on bone. Whether this association is affected by pre-surgical type 2 diabetes (T2D) and surgically induced diabetes remission is unknown.

Methods

In this cross-sectional, matched cohort study 6 years after RYGB, we investigated bone health in 96 individuals with body mass index (BMI) > 35 kg/m2 and T2D (stratified on current diabetes status) treated by RYGB 6 years earlier compared with 49 non-operated individuals with T2D matched with respect to sex, age, and current BMI. Main outcome measures were areal and volumetric bone mineral density (aBMD and vBMD), bone turnover, and odds ratio of osteoporosis/osteopenia.

Results

The RYGB group had lower hip (0.916 vs 1.010 g/cm2, p < 0.001), forearm (0.497 g/cm2 vs 0.554 g/cm2, p < 0.001) aBMD, (269.63 mg/cm3 vs 306.07 mg/cm3, p < 0.001) tibial, and radial (238.57 mg/cm3 vs 278.14 mg/cm3, p < 0.0001) vBMD than the control group. Relative to the control group, c-terminal cross-linked telopeptide, procollagen type I amino-terminal propeptide, and osteocalcin were 75%, 41%, and 72% higher in the RYGB group, respectively (all p < 0.001). Odds ratio for osteopenia/osteoporosis in operated individuals was 2.21 (95% CI 1.06; 4.79, p = 0.05). Overall, stratified analysis on current diabetes status did not alter these outcomes.

Conclusions

Individuals with T2D treated by RYGB, compared to individuals with T2D of similar age and body composition not treated by RYGB, have lower BMD, lower bone strength, and increased levels of several bone turnover markers. Bone health was not associated with current diabetes status in the RYGB group.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Angrisani L, Santonicola A, Iovino P, Vitiello A, Zundel N, Buchwald H, Scopinaro N. Bariatric surgery and endoluminal procedures: IFSO worldwide survey 2014. Obes Surg. 2017;27(9):2279–89

    CAS  Article  Google Scholar 

  2. 2.

    Chang SH, Stoll CR, Song J, et al. The effectiveness and risks of bariatric surgery: an updated systematic review and meta-analysis, 2003-2012. JAMA Surg. 2014;149(3):275–87.

    Article  Google Scholar 

  3. 3.

    Schauer PR, Bhatt DL, Kirwan JP, et al. Bariatric surgery versus intensive medical therapy for diabetes—5-year outcomes. N Engl J Med. 2017;376(7):641–51.

    Article  Google Scholar 

  4. 4.

    Yu EW. Bone metabolism after bariatric surgery. J Bone Miner Res. 2014;29(7):1507–18.

    Article  Google Scholar 

  5. 5.

    Pories WJ. Bariatric surgery: risks and rewards. J Clin Endocrinol Metab. 2008;93(11 Suppl 1):589–96.

    CAS  Article  Google Scholar 

  6. 6.

    Schafer AL, Weaver CM, Black DM, et al. Intestinal calcium absorption decreases dramatically after gastric bypass surgery despite optimization of vitamin D status. J Bone Miner Res. 2015;30(8):1377–85.

    CAS  Article  Google Scholar 

  7. 7.

    Toh SY, Zarshenas N, Jorgensen J. Prevalence of nutrient deficiencies in bariatric patients. Nutrition. 2009;25(11–12):1150–6.

    CAS  Article  Google Scholar 

  8. 8.

    Hage MP, El-Hajj Fuleihan G. Bone and mineral metabolism in patients undergoing Roux-en-Y gastric bypass. Osteoporos Int. 2014;25(2):423–39.

    CAS  Article  Google Scholar 

  9. 9.

    Via MA, Mechanick JI. Nutritional and micronutrient care of bariatric surgery patients: current evidence update. Curr Obes Rep. 2017;6(3):286–96.

    Article  Google Scholar 

  10. 10.

    Madsen LR, Espersen R, Rejnmark L, Richelsen B. Effect of calcium citrate vs calcium carbonate on elevated parathyroid hormone after Roux-en-Y gastric bypass. A double-blinded, randomized trial. Clin Endocrinol (Oxf). 2018;89(6):734–41

    CAS  Article  Google Scholar 

  11. 11.

    Raoof M, Naslund I, Rask E, et al. Effect of gastric bypass on bone mineral density, parathyroid hormone and vitamin D: 5 years follow-up. Obes Surg. 2016;26(5):1141–5.

    Article  Google Scholar 

  12. 12.

    Vilarrasa N, San Jose P, Garcia I, et al. Evaluation of bone mineral density loss in morbidly obese women after gastric bypass: 3-year follow-up. Obes Surg. 2011;21(4):465–72.

    Article  Google Scholar 

  13. 13.

    Billeter AT, Probst P, Fischer L, et al. Risk of malnutrition, trace metal, and vitamin deficiency post roux-en-y gastric bypass--a prospective study of 20 patients with BMI < 35 kg/m(2). Obes Surg. 2015;25(11):2125–34.

    Article  Google Scholar 

  14. 14.

    Maghrabi AH, Wolski K, Abood B, et al. Two-year outcomes on bone density and fracture incidence in patients with T2DM randomized to bariatric surgery versus intensive medical therapy. Obesity (Silver Spring). 2015;23(12):2344–8.

    Article  Google Scholar 

  15. 15.

    Yu EW, Wewalka M, Ding SA, et al. Effects of gastric bypass and gastric banding on bone remodeling in obese patients with type 2 diabetes. J Clin Endocrinol Metab. 2016;101(2):714–22.

    CAS  Article  Google Scholar 

  16. 16.

    Hygum K, Starup-Linde J, Harslof T, et al. MECHANISMS IN ENDOCRINOLOGY: diabetes mellitus, a state of low bone turnover - a systematic review and meta-analysis. Eur J Endocrinol. 2017;176(3):R137–57.

    CAS  Article  Google Scholar 

  17. 17.

    Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes--a meta-analysis. Osteoporos Int. 2007;18(4):427–44.

    CAS  Article  Google Scholar 

  18. 18.

    Leslie WD, Rubin MR, Schwartz AV, et al. Type 2 diabetes and bone. J Bone Miner Res. 2012;27(11):2231–7.

    Article  Google Scholar 

  19. 19.

    Stein EM, Silverberg SJ. Bone loss after bariatric surgery: causes, consequences, and management. Lancet Diabetes Endocrinol. 2014;2(2):165–74.

    Article  Google Scholar 

  20. 20.

    Fuller H, Fuller R, Pereira RMR. High resolution peripheral quantitative computed tomography for the assessment of morphological and mechanical bone parameters. Rev Bras Reumatol. 2015;55:352–62.

    Article  Google Scholar 

  21. 21.

    Stein EM, Carrelli A, Young P, et al. Bariatric surgery results in cortical bone loss. J Clin Endocrinol Metab. 2013;98(2):541–9.

    CAS  Article  Google Scholar 

  22. 22.

    Lynge E, Sandegaard JL, Rebolj M. The Danish National Patient Register. Scand J Public Health. 2011;39(7 Suppl):30–3.

    Article  Google Scholar 

  23. 23.

    Buse JB, Caprio S, Cefalu WT, Ceriello A, Del Prato S, Inzucchi SE, McLaughlin S, Phillips GL 2nd, Robertson RP, Rubino F, Kahn R, Kirkman MS. How do we define cure of diabetes?. Diabetes Care. 2009;32(11):2133-5.

    Article  Google Scholar 

  24. 24.

    Dicker D, Yahalom R, Comaneshter DS, et al. Long-term outcomes of three types of bariatric surgery on obesity and type 2 diabetes control and remission. Obes Surg. 2016;26(8):1814-20.

    Article  Google Scholar 

  25. 25.

    Looker AC, Melton 3rd LJ, Harris T, et al. Age, gender, and race/ethnic differences in total body and subregional bone density. Osteoporos Int. 2009;20(7):1141–9.

    CAS  Article  Google Scholar 

  26. 26.

    Abrahamsen B, Gram J, Hansen TB, et al. Cross calibration of QDR-2000 and QDR-1000 dual-energy X-ray densitometers for bone mineral and soft-tissue measurements. Bone. 1995;16(3):385–90.

    CAS  Article  Google Scholar 

  27. 27.

    Mosekilde L, Beck-Nielsen H, Sorensen OH, et al. Hormonal replacement therapy reduces forearm fracture incidence in recent postmenopausal women - results of the Danish osteoporosis prevention study. Maturitas. 2000;36(3):181–93.

    CAS  Article  Google Scholar 

  28. 28.

    Ornstrup MJ, Harslof T, Kjaer TN, et al. Resveratrol increases bone mineral density and bone alkaline phosphatase in obese men: a randomized placebo-controlled trial. J Clin Endocrinol Metab. 2014;99(12):4720–9.

    CAS  Article  Google Scholar 

  29. 29.

    Pauchard Y, Liphardt AM, Macdonald HM, et al. Quality control for bone quality parameters affected by subject motion in high-resolution peripheral quantitative computed tomography. Bone. 2012;50(6):1304–10.

    Article  Google Scholar 

  30. 30.

    Yu EW, Bouxsein ML, Putman MS, et al. Two-year changes in bone density after Roux-en-Y gastric bypass surgery. J Clin Endocrinol Metab. 2015;100(4):1452–9.

    CAS  Article  Google Scholar 

  31. 31.

    Stein EM, Silva BC, Boutroy S, et al. Primary hyperparathyroidism is associated with abnormal cortical and trabecular microstructure and reduced bone stiffness in postmenopausal women. J Bone Miner Res. 2013;28(5):1029–40.

    Article  Google Scholar 

  32. 32.

    Lalmohamed A, de Vries F, Bazelier MT, et al. Risk of fracture after bariatric surgery in the United Kingdom: population based, retrospective cohort study. BMJ. 2012;345:e5085.

    Article  Google Scholar 

  33. 33.

    Rousseau C, Jean S, Gamache P, et al. Change in fracture risk and fracture pattern after bariatric surgery: nested case-control study. BMJ. 2016;354:i3794.

    Article  Google Scholar 

  34. 34.

    Yu EW, Lee MP, Landon JE, Lindeman KG, Kim SC. Fracture risk after bariatric surgery: Roux-en-Y gastric bypass versus adjustable gastric banding. J Bone Miner Res. 2.

  35. 35.

    Axelsson KF, Werling M, Eliasson B, et al. Fracture risk after gastric bypass surgery: a retrospective cohort study. J Bone Miner Res. 2018;33(12):2122–31.

    Article  Google Scholar 

  36. 36.

    Webb AR, Kline L, Holick MF. Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J Clin Endocrinol Metab. 1988;67(2):373–8.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the staff at our outpatient clinic for help in recruiting participants.

Funding

LRM is affiliated to the Danish Diabetes Academy funded by the Novo Nordisk Foundation (NNF 12SA1016522). The study was funded by the Health Research Fund of Central Denmark Region (A294), the Novo Nordisk Foundation (NNF16OC0020870), the A.P. Møller Foundation (15–253), and the Danish Osteoporosis Society (grant number n/a).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lene Ring Madsen.

Ethics declarations

Conflict of Interest

LRM has received grant support from the Danish Diabetes Academy funded by the Novo Nordisk Foundation, the A.P. Møller Foundation, and the Health Research Fund of Central Denmark Region. RE has received grant support from the Danish Osteoporosis Society. MJO and NRJ have nothing to disclose. BL has received grant support from Amgen and Novo Nordisk and has received lecture fees from the advisory board of Amgen, UCB, Eli Lilly, and TEVA. BR has received grant support from the Novo Nordisk Foundation.

Ethical Approval

The study was approved by the ethical committee of Central Denmark Region (VEK 1-10-72-167-15) and registered at clinicaltrials.org (NCT02625649). The study was conducted according to the 1964 Declaration of Helsinki and its later amendments.

Informed Consent

Participation in this study was preceded by full explanation of the purpose and nature of all procedures used and written consent.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 30 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Madsen, L.R., Espersen, R., Ornstrup, M.J. et al. Bone Health in Patients with Type 2 Diabetes Treated by Roux-En-Y Gastric Bypass and the Role of Diabetes Remission. OBES SURG 29, 1823–1831 (2019). https://doi.org/10.1007/s11695-019-03753-3

Download citation

Keywords

  • Bariatric surgery
  • Roux-en-Y gastric bypass
  • Osteoporosis
  • Type 2 diabetes
  • Dual-energy X-ray absorptiometry
  • Bone turnover
  • Diabetes
  • High-resolution peripheral quantitative computed tomography