Skip to main content

Advertisement

Log in

More than an Anti-diabetic Bariatric Surgery, Metabolic Surgery Alleviates Systemic and Local Inflammation in Obesity

  • Review Article
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Obesity, associated with increased risk of type 2 diabetes (T2D), cardiovascular disease, and hepatic steatosis et al., has become a major global health problem. Recently, obesity has been proven to be under a status of low-grade, chronic inflammation, which contributes to insulin resistance and T2D. Bariatric surgery is currently an effective treatment for the control of morbid obesity and T2D, which impels ongoing efforts to clarify physiological and molecular mechanisms mediating these benefits. The correlation between obesity, inflammation, and T2D has been revealed to a certain extent, and studies have shed light on the effect of bariatric surgery on inflammatory status of subjects with obesity. Based on recent findings, this review focuses on the relationship between inflammation, obesity, and bariatric surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

A1c:

Glycated hemoglobin

AMPK:

Adenosine monophosphate-activated protein kinase

BMI:

Body mass index

BP:

Blood pressure

CCL3:

Chemokine ligand 3

CCL4:

Chemokine ligand 4

CCR2:

Chemokine receptor-2

CRP:

C-reactive protein

CSF-3:

Colony-stimulating factor 3

CXCL10:

C-X-C motif chemokine 10

ER stress:

Endoplasmic reticulum stress

HFD:

High-fat diet

HIF-1α:

Hypoxia-inducible factor 1a

IBD:

Inflammatory bowel disease

IFN-γ:

Interferon-γ

IL-2:

Interleukin-2

IL-4:

Interleukin-4

IL-6:

Interleukin-6;

IL-8:

Interleukin-8

IL-15:

Interleukin-15

IL-18:

Interleukin-18

iNKT cells:

Invariant natural killer cells

IR:

Insulin resistance

JNK:

Jun N-terminal kinase

LAGB:

Laparoscopic adjustable gastric banding

LBPD:

Laparoscopic biliopancreatic diversion

LDL-c:

Low-density lipoprotein cholesterol

LRYGB:

Laparoscopic Roux-en-Y gastric bypass

LSG:

Laparoscopic sleeve gastrectomy

LTB4/LTB4R1:

Leukotriene B4/leukotriene B4 receptor 1

MCP-1:

Monocyte chemotactic protein 1

MHC II:

Major histocompatibility complex II

MIF:

Macrophage migration inhibitory factor

MIP:

Macrophage inflammatory protein

MKP5:

Mitogen-activated protein kinase phosphatase 5

NCR1:

NK cell-activating receptor

NF-ΚB:

Nuclear factor kappa B

NK cells:

Natural killer cells

PAI-1:

Plasminogen activator inhibitor-1

PLAUR:

Plasminogen activator urokinase receptor

ROS:

Reactive oxygen species

SAT:

Subcutaneous adipose tissue

sCD40L:

Soluble CD40 ligand

SG:

Sleeve gastrectomy

STAMP2:

Six transmembrane protein of prostate

T2D:

Type 2 diabetes

TNF-α:

Tumor necrosis factor-α

VAT:

Visceral adipose tissue

References

  1. NCD-RisC NRFC. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet. 2016;387(10026):1377–96.

    Article  Google Scholar 

  2. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860–7.

    Article  CAS  PubMed  Google Scholar 

  3. Arnold M, Pandeya N, Byrnes G, et al. Global burden of cancer attributable to high body-mass index in 2012: a population-based study. Lancet Oncol. 2015;16(1):36–46.

    Article  PubMed  Google Scholar 

  4. Li S, Xiao J, Ji L, et al. BMI and waist circumference are associated with impaired glucose metabolism and type 2 diabetes in normal weight Chinese adults. J Diabetes Complicat. 2014;28(4):470–6.

    Article  Google Scholar 

  5. Liu L, Lou Q, Guo X, et al. Management status and its predictive factors in patients with type 2 diabetes in China: a nationwide multicenter study. Diabetes Metab Res Rev. 2015;31(8):811–6.

    Article  CAS  PubMed  Google Scholar 

  6. Rucker D, Padwal R, Li SK, et al. Long term pharmacotherapy for obesity and overweight: updated meta-analysis. BMJ. 2007;335(7631):1194–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Greenberg I, Stampfer MJ, Schwarzfuchs D, et al. Adherence and success in long-term weight loss diets: the dietary intervention randomized controlled trial (DIRECT). J Am Coll Nutr. 2009;28(2):159–68.

    Article  CAS  PubMed  Google Scholar 

  8. Colquitt JL, Pickett K, Loveman E, et al. Surgery for weight loss in adults. Cochrane Database Syst Rev. 2014;8(8):CD003641.

    Google Scholar 

  9. Knop FK, Taylor R. Mechanism of metabolic advantages after bariatric surgery: it’s all gastrointestinal factors versus it’s all food restriction. Diabetes Care. 2013;36(Suppl 2):S287–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11(2):98–107.

    Article  CAS  PubMed  Google Scholar 

  11. Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489(7415):242–9.

    Article  CAS  PubMed  Google Scholar 

  12. Zlotnikov-Klionsky Y, Nathansohn-Levi B, Shezen E, et al. Perforin-positive dendritic cells exhibit an immuno-regulatory role in metabolic syndrome and autoimmunity. Immunity. 2015;43(4):776–87.

    Article  CAS  PubMed  Google Scholar 

  13. Spranger J, Kroke A, Mohlig M, et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European prospective investigation into cancer and nutrition (EPIC)-Potsdam Study. Diabetes. 2003;52(3):812–7.

    Article  CAS  PubMed  Google Scholar 

  14. Herder C, Illig T, Rathmann W, et al. Inflammation and type 2 diabetes: results from KORA Augsburg. Gesundheitswesen. 2005;67(Suppl 1):S115–21.

    Article  PubMed  Google Scholar 

  15. Wu H, Ghosh S, Perrard XD, et al. T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity. Circulation. 2007;115(8):1029–38.

    Article  CAS  PubMed  Google Scholar 

  16. Deng T, Lyon CJ, Minze LJ, et al. Class II major histocompatibility complex plays an essential role in obesity-induced adipose inflammation. Cell Metab. 2013;17(3):411–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Aljada A, Mohanty P, Ghanim H, et al. Increase in intranuclear nuclear factor kappaB and decrease in inhibitor kappaB in mononuclear cells after a mixed meal: evidence for a proinflammatory effect. Am J Clin Nutr. 2004;79(4):682–90.

    Article  CAS  PubMed  Google Scholar 

  18. Watt MJ, Hevener A, Lancaster GI, et al. Ciliary neurotrophic factor prevents acute lipid-induced insulin resistance by attenuating ceramide accumulation and phosphorylation of c-Jun N-terminal kinase in peripheral tissues. Endocrinology. 2006;147(5):2077–85.

    Article  CAS  PubMed  Google Scholar 

  19. Wellen KE, Fucho R, Gregor MF, et al. Coordinated regulation of nutrient and inflammatory responses by STAMP2 is essential for metabolic homeostasis. Cell. 2007;129(3):537–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ye J, Gao Z, Yin J, et al. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab. 2007;293(4):E1118–28.

    Article  CAS  PubMed  Google Scholar 

  21. Engin A. Adipose tissue hypoxia in obesity and its impact on preadipocytes and macrophages: hypoxia hypothesis. Adv Exp Med Biol. 2017;960:305–26.

    Article  CAS  PubMed  Google Scholar 

  22. Murphy AM, Thomas A, Crinion SJ, Kent BD, Tambuwala MM, Fabre A, et al. Intermittent hypoxia in obstructive sleep apnoea mediates insulin resistance through adipose tissue inflammation. Eur Respir J. 2017;49(4).

    Article  PubMed  CAS  Google Scholar 

  23. Ozcan U, Cao Q, Yilmaz E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 2004;306(5695):457–61.

    Article  PubMed  CAS  Google Scholar 

  24. Hu P, Han Z, Couvillon AD, et al. Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression. Mol Cell Biol. 2006;26(8):3071–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Urano F, Wang X, Bertolotti A, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 2000;287(5453):664–6.

    Article  CAS  PubMed  Google Scholar 

  26. Cinti S, Mitchell G, Barbatelli G, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005;46(11):2347–55.

    Article  CAS  PubMed  Google Scholar 

  27. Hotamisligil GS, Peraldi P, Budavari A, et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science. 1996;271(5249):665–8.

    Article  CAS  PubMed  Google Scholar 

  28. Bouter B, Geary N, Langhans W, et al. Diet-genotype interactions in the early development of obesity and insulin resistance in mice with a genetic deficiency in tumor necrosis factor-alpha. Metabolism. 2010;59(7):1065–73.

    Article  CAS  PubMed  Google Scholar 

  29. Dominguez H, Storgaard H, Rask-Madsen C, et al. Metabolic and vascular effects of tumor necrosis factor-alpha blockade with etanercept in obese patients with type 2 diabetes. J Vasc Res. 2005;42(6):517–25.

    Article  CAS  PubMed  Google Scholar 

  30. Elgazar-Carmon V, Rudich A, Hadad N, et al. Neutrophils transiently infiltrate intra-abdominal fat early in the course of high-fat feeding. J Lipid Res. 2008;49(9):1894–903.

    Article  CAS  PubMed  Google Scholar 

  31. Patsouris D, Li PP, Thapar D, et al. Ablation of CD11c-positive cells normalizes insulin sensitivity in obese insulin resistant animals. Cell Metab. 2008;8(4):301–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Khan IM, Dai PX, Perrard JL, et al. Attenuated adipose tissue and skeletal muscle inflammation in obese mice with combined CD4+ and CD8+ T cell deficiency. Atherosclerosis. 2014;233(2):419–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ying W, Wollam J, Ofrecio JM, et al. Adipose tissue B2 cells promote insulin resistance through leukotriene LTB4/LTB4R1 signaling. J Clin Invest. 2017;127(3):1019–30.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lee BC, Kim MS, Pae M, et al. Adipose natural killer cells regulate adipose tissue macrophages to promote insulin resistance in obesity. Cell Metab. 2016;23(4):685–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zeng TS, Liu FM, Zhou J, et al. Depletion of Kupffer cells attenuates systemic insulin resistance, inflammation and improves liver autophagy in high-fat diet fed mice. Endocr J. 2015;62(7):615–26.

    Article  CAS  PubMed  Google Scholar 

  36. Lynch L, Nowak M, Varghese B, et al. Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production. Immunity. 2012;37(3):574–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ballak DB, Stienstra R, Hijmans A, et al. Combined B- and T-cell deficiency does not protect against obesity-induced glucose intolerance and inflammation. Cytokine. 2013;62(1):96–103.

    Article  CAS  PubMed  Google Scholar 

  38. Kocot J, Dziemidok P, Kielczykowska M, et al. Adipokine profile in patients with type 2 diabetes depends on degree of obesity. Med Sci Monit. 2017;23(10):4995–5004.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Olczyk P, Koprowski R, Komosinska-Vassev K, et al. Adiponectin, leptin, and leptin receptor in obese patients with type 2 diabetes treated with insulin detemir. Molecules. 2017;22(8):1274.

    Article  CAS  PubMed Central  Google Scholar 

  40. Shetty S, Ramos-Roman MA, Cho YR, et al. Enhanced fatty acid flux triggered by adiponectin overexpression. Endocrinology. 2012;153(1):113–22.

    Article  CAS  PubMed  Google Scholar 

  41. Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002;8(11):1288–95.

    Article  CAS  PubMed  Google Scholar 

  42. Ceddia RB, Somwar R, Maida A, et al. Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia. 2005;48(1):132–9.

    Article  CAS  PubMed  Google Scholar 

  43. Awazawa M, Ueki K, Inabe K, et al. Adiponectin suppresses hepatic SREBP1c expression in an AdipoR1/LKB1/AMPK dependent pathway. Biochem Biophys Res Commun. 2009;382(1):51–6.

    Article  CAS  PubMed  Google Scholar 

  44. Yuan F, Li YN, Liu YH, et al. Adiponectin inhibits the generation of reactive oxygen species induced by high glucose and promotes endothelial NO synthase formation in human mesangial cells. Mol Med Rep. 2012;6(2):449–53.

    Article  CAS  PubMed  Google Scholar 

  45. Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. J Clin Invest. 2011;121(6):2094–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117(1):175–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fleming BD, Mosser DM. Regulatory macrophages: setting the threshold for therapy. Eur J Immunol. 2011;41(9):2498–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ebihara K, Ogawa Y, Masuzaki H, et al. Transgenic overexpression of leptin rescues insulin resistance and diabetes in a mouse model of lipoatrophic diabetes. Diabetes. 2001;50(6):1440–8.

    Article  CAS  PubMed  Google Scholar 

  49. Lord GM, Matarese G, Howard JK, et al. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature. 1998;394(6696):897–901.

    Article  CAS  PubMed  Google Scholar 

  50. Kanda H, Tateya S, Tamori Y, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 2006;116(6):1494–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lagathu C, Bastard JP, Auclair M, et al. Chronic interleukin-6 (IL-6) treatment increased IL-6 secretion and induced insulin resistance in adipocyte: prevention by rosiglitazone. Biochem Biophys Res Commun. 2003;311(2):372–9.

    Article  CAS  PubMed  Google Scholar 

  52. Wensveen FM, Jelencic V, Valentic S, et al. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat Immunol. 2015;16(4):376–85.

    Article  CAS  PubMed  Google Scholar 

  53. Spite M, Hellmann J, Tang Y, et al. Deficiency of the leukotriene B4 receptor, BLT-1, protects against systemic insulin resistance in diet-induced obesity. J Immunol. 2011;187(4):1942–9.

    Article  CAS  PubMed  Google Scholar 

  54. Li P, Oh DY, Bandyopadhyay G, et al. LTB4 promotes insulin resistance in obese mice by acting on macrophages, hepatocytes and myocytes. Nat Med. 2015;21(3):239–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cai D, Yuan M, Frantz DF, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med. 2005;11(2):183–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Saghizadeh M, Ong JM, Garvey WT, et al. The expression of TNF alpha by human muscle. Relationship to insulin resistance. J Clin Invest. 1996;97(4):1111–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ehses JA, Perren A, Eppler E, et al. Increased number of islet-associated macrophages in type 2 diabetes. Diabetes. 2007;56(9):2356–70.

    Article  CAS  PubMed  Google Scholar 

  58. De Souza CT, Araujo EP, Bordin S, et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology. 2005;146(10):4192–9.

    Article  PubMed  CAS  Google Scholar 

  59. Baffy G. Kupffer cells in non-alcoholic fatty liver disease: the emerging view. J Hepatol. 2009;51(1):212–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Khan IM, Perrard XY, Brunner G, et al. Intermuscular and perimuscular fat expansion in obesity correlates with skeletal muscle T cell and macrophage infiltration and insulin resistance. Int J Obes. 2015;39(11):1607–18.

    Article  CAS  Google Scholar 

  61. Le NH, Kim CS, Park T, et al. Quercetin protects against obesity-induced skeletal muscle inflammation and atrophy. Mediat Inflamm. 2014;2014(2014):834294.

    Google Scholar 

  62. Hong EG, Ko HJ, Cho YR, et al. Interleukin-10 prevents diet-induced insulin resistance by attenuating macrophage and cytokine response in skeletal muscle. Diabetes. 2009;58(11):2525–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Luck H, Tsai S, Chung J, et al. Regulation of obesity-related insulin resistance with gut anti-inflammatory agents. Cell Metab. 2015;21(4):527–42.

    Article  CAS  PubMed  Google Scholar 

  64. Monteiro-Sepulveda M, Touch S, Mendes-Sa C, et al. Jejunal T cell inflammation in human obesity correlates with decreased enterocyte insulin signaling. Cell Metab. 2015;22(1):113–24.

    Article  CAS  PubMed  Google Scholar 

  65. Obici S, Rossetti L. Minireview: nutrient sensing and the regulation of insulin action and energy balance. Endocrinology. 2003;144(12):5172–8.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang X, Zhang G, Zhang H, et al. Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell. 2008;135(1):61–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Carter PL. The evolution of bariatric surgery. Am J Surg. 2015;209(5):779–82.

    Article  PubMed  Google Scholar 

  68. Biertho L, Lebel S, Marceau S, et al. Perioperative complications in a consecutive series of 1000 duodenal switches. Surg Obes Relat Dis. 2013;9(1):63–8.

    Article  PubMed  Google Scholar 

  69. Salminen P, Helmio M, Ovaska J, et al. Effect of laparoscopic sleeve gastrectomy vs laparoscopic Roux-en-Y gastric bypass on weight loss at 5 years among patients with morbid obesity: the SLEEVEPASS randomized clinical trial. JAMA. 2018;319(3):241–54.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Shen X, Zhang X, Bi J, et al. Long-term complications requiring reoperations after laparoscopic adjustable gastric banding: a systematic review. Surg Obes Relat Dis. 2015;11(4):956–64.

    Article  PubMed  Google Scholar 

  71. Adams TD, Davidson LE, Litwin SE, et al. Weight and metabolic outcomes 12 years after gastric bypass. N Engl J Med. 2017;377(12):1143–55.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Dixon JB, O’Brien PE, Playfair J, et al. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA. 2008;299(3):316–23.

    Article  CAS  PubMed  Google Scholar 

  73. Ikramuddin S, Korner J, Lee WJ, et al. Roux-en-Y gastric bypass vs intensive medical management for the control of type 2 diabetes, hypertension, and hyperlipidemia: the Diabetes Surgery Study randomized clinical trial. JAMA. 2013;309(21):2240–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wentworth JM, Playfair J, Laurie C, et al. Multidisciplinary diabetes care with and without bariatric surgery in overweight people: a randomised controlled trial. Lancet Diabetes Endocrinol. 2014;2(7):545–52.

    Article  PubMed  Google Scholar 

  75. Schauer PR, Kashyap SR, Wolski K, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366(17):1567–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Schauer PR, Bhatt DL, Kirwan JP, et al. Bariatric surgery versus intensive medical therapy for diabetes—3-year outcomes. N Engl J Med. 2014;370(21):2002–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Mingrone G, Panunzi S, De Gaetano A, et al. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial. Lancet. 2015;386(9997):964–73.

    Article  PubMed  Google Scholar 

  78. Schauer PR, Bhatt DL, Kirwan JP, et al. Bariatric surgery versus intensive medical therapy for diabetes—5-year outcomes. N Engl J Med. 2017;376(7):641–51.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Pradhan AD, Manson JE, Rifai N, et al. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA. 2001;286(3):327–34.

    Article  CAS  PubMed  Google Scholar 

  80. Randell EW, Twells LK, Gregory DM, et al. Pre-operative and post-operative changes in CRP and other biomarkers sensitive to inflammatory status in patients with severe obesity undergoing laparoscopic sleeve gastrectomy. Clin Biochem. 2017.

  81. Herrera MF, Pantoja JP, Velazquez-Fernandez D, et al. Potential additional effect of omentectomy on metabolic syndrome, acute-phase reactants, and inflammatory mediators in grade III obese patients undergoing laparoscopic Roux-en-Y gastric bypass: a randomized trial. Diabetes Care. 2010;33(7):1413–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mallipedhi A, Prior SL, Barry JD, et al. Changes in inflammatory markers after sleeve gastrectomy in patients with impaired glucose homeostasis and type 2 diabetes. Surg Obes Relat Dis. 2014;10(6):1123–8.

    Article  PubMed  Google Scholar 

  83. Cancello R, Rouault C, Guilhem G, et al. Urokinase plasminogen activator receptor in adipose tissue macrophages of morbidly obese subjects. Obes Facts. 2011;4(1):17–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dillard TH, Purnell JQ, Smith MD, et al. Omentectomy added to Roux-en-Y gastric bypass surgery: a randomized, controlled trial. Surg Obes Relat Dis. 2013;9(2):269–75.

    Article  PubMed  Google Scholar 

  85. Alfadda AA, Turjoman AA, Moustafa AS, et al. A proteomic analysis of excreted and circulating proteins from obese patients following two different weight-loss strategies. Exp Biol Med (Maywood). 2014;239(5):568–80.

    Article  CAS  Google Scholar 

  86. Sell H, Divoux A, Poitou C, et al. Chemerin correlates with markers for fatty liver in morbidly obese patients and strongly decreases after weight loss induced by bariatric surgery. J Clin Endocrinol Metab. 2010;95(6):2892–6.

    Article  CAS  PubMed  Google Scholar 

  87. Sdralis E, Argentou M, Mead N, et al. A prospective randomized study comparing patients with morbid obesity submitted to sleeve gastrectomy with or without omentectomy. Obes Surg. 2013;23(7):965–71.

    Article  PubMed  Google Scholar 

  88. Garcia-Fuentes E, Garcia-Almeida JM, Garcia-Arnes J, et al. Plasma visfatin concentrations in severely obese subjects are increased after intestinal bypass. Obesity (Silver Spring). 2007;15(10):2391–5.

    Article  CAS  Google Scholar 

  89. Trachta P, Dostalova I, Haluzikova D, et al. Laparoscopic sleeve gastrectomy ameliorates mRNA expression of inflammation-related genes in subcutaneous adipose tissue but not in peripheral monocytes of obese patients. Mol Cell Endocrinol. 2014;383(1–2):96–102.

    Article  CAS  PubMed  Google Scholar 

  90. Aron-Wisnewsky J, Tordjman J, Poitou C, et al. Human adipose tissue macrophages: m1 and m2 cell surface markers in subcutaneous and omental depots and after weight loss. J Clin Endocrinol Metab. 2009;94(11):4619–23.

    Article  CAS  PubMed  Google Scholar 

  91. Pardina E, Ferrer R, Rivero J, et al. Alterations in the common pathway of coagulation during weight loss induced by gastric bypass in severely obese patients. Obesity (Silver Spring). 2012;20(5):1048–56.

    Article  CAS  Google Scholar 

  92. Catalan V, Gomez-Ambrosi J, Ramirez B, et al. Proinflammatory cytokines in obesity: impact of type 2 diabetes mellitus and gastric bypass. Obes Surg. 2007;17(11):1464–74.

    Article  PubMed  Google Scholar 

  93. Cancello R, Henegar C, Viguerie N, et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes. 2005;54(8):2277–86.

    Article  CAS  PubMed  Google Scholar 

  94. Lima MM, Pareja JC, Alegre SM, et al. Visceral fat resection in humans: effect on insulin sensitivity, beta-cell function, adipokines, and inflammatory markers. Obesity (Silver Spring). 2013;21(3):E182–9.

    Article  CAS  Google Scholar 

  95. Carvalho BM, Oliveira AG, Ueno M, et al. Modulation of double-stranded RNA-activated protein kinase in insulin sensitive tissues of obese humans. Obesity (Silver Spring). 2013;21(12):2452–7.

    Article  CAS  Google Scholar 

  96. Fenske WK, Dubb S, Bueter M, et al. Effect of bariatric surgery-induced weight loss on renal and systemic inflammation and blood pressure: a 12-month prospective study. Surg Obes Relat Dis. 2013;9(4):559–68.

    Article  PubMed  Google Scholar 

  97. Toubal A, Clement K, Fan R, et al. SMRT-GPS2 corepressor pathway dysregulation coincides with obesity-linked adipocyte inflammation. J Clin Invest. 2013;123(1):362–79.

    Article  CAS  PubMed  Google Scholar 

  98. Bueter M, Dubb SS, Gill A, et al. Renal cytokines improve early after bariatric surgery. Br J Surg. 2010;97(12):1838–44.

    Article  CAS  PubMed  Google Scholar 

  99. Pardina E, Ferrer R, Baena-Fustegueras JA, et al. Only C-reactive protein, but not TNF-alpha or IL6, reflects the improvement in inflammation after bariatric surgery. Obes Surg. 2012;22(1):131–9.

    Article  PubMed  Google Scholar 

  100. Hand LE, Usan P, Cooper GJ, et al. Adiponectin induces A20 expression in adipose tissue to confer metabolic benefit. Diabetes. 2015;64(1):128–36.

    Article  CAS  PubMed  Google Scholar 

  101. Haider DG, Schindler K, Prager G, et al. Serum retinol-binding protein 4 is reduced after weight loss in morbidly obese subjects. J Clin Endocrinol Metab. 2007;92(3):1168–71.

    Article  CAS  PubMed  Google Scholar 

  102. Urbanova M, Dostalova I, Trachta P, et al. Serum concentrations and subcutaneous adipose tissue mRNA expression of omentin in morbid obesity and type 2 diabetes mellitus: the effect of very-low-calorie diet, physical activity and laparoscopic sleeve gastrectomy. Physiol Res. 2014;63(2):207–18.

    CAS  PubMed  Google Scholar 

  103. Moschen AR, Wieser V, Gerner RR, et al. Adipose tissue and liver expression of SIRT1, 3, and 6 increase after extensive weight loss in morbid obesity. J Hepatol. 2013;59(6):1315–22.

    Article  CAS  PubMed  Google Scholar 

  104. Haluzikova D, Lacinova Z, Kavalkova P, et al. Laparoscopic sleeve gastrectomy differentially affects serum concentrations of FGF-19 and FGF-21 in morbidly obese subjects. Obesity (Silver Spring). 2013;21(7):1335–42.

    Article  CAS  Google Scholar 

  105. Catalan V, Gomez-Ambrosi J, Rodriguez A, et al. Increased circulating and visceral adipose tissue expression levels of YKL-40 in obesity-associated type 2 diabetes are related to inflammation: impact of conventional weight loss and gastric bypass. J Clin Endocrinol Metab. 2011;96(1):200–9.

    Article  CAS  PubMed  Google Scholar 

  106. Moschen AR, Molnar C, Geiger S, et al. Anti-inflammatory effects of excessive weight loss: potent suppression of adipose interleukin 6 and tumour necrosis factor alpha expression. Gut. 2010;59(9):1259–64.

    Article  CAS  PubMed  Google Scholar 

  107. Gumbau V, Bruna M, Canelles E, et al. A prospective study on inflammatory parameters in obese patients after sleeve gastrectomy. Obes Surg. 2014;24(6):903–8.

    Article  PubMed  Google Scholar 

  108. Farey JE, Fisher OM, Levert-Mignon AJ, et al. Decreased levels of circulating cancer-associated protein biomarkers following bariatric surgery. Obes Surg. 2017;27(3):578–85.

    Article  PubMed  Google Scholar 

  109. Viana EC, Araujo-Dasilio KL, Miguel GP, et al. Gastric bypass and sleeve gastrectomy: the same impact on IL-6 and TNF-alpha. Prospective clinical trial. Obes Surg. 2013;23(8):1252–61.

    Article  PubMed  Google Scholar 

  110. Swarbrick MM, Stanhope KL, Austrheim-Smith IT, et al. Longitudinal changes in pancreatic and adipocyte hormones following Roux-en-Y gastric bypass surgery. Diabetologia. 2008;51(10):1901–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Whitson BA, Leslie DB, Kellogg TA, et al. Adipokine response in diabetics and nondiabetics following the Roux-en-Y gastric bypass: a preliminary study. J Surg Res. 2007;142(2):295–300.

    Article  CAS  PubMed  Google Scholar 

  112. Holdstock C, Lind L, Engstrom BE, et al. CRP reduction following gastric bypass surgery is most pronounced in insulin-sensitive subjects. Int J Obes. 2005;29(10):1275–80.

    Article  CAS  Google Scholar 

  113. Ballesteros-Pomar MD, Calleja S, Diez-Rodriguez R, et al. Inflammatory status is different in relationship to insulin resistance in severely obese people and changes after bariatric surgery or diet-induced weight loss. Exp Clin Endocrinol Diabetes. 2014;122(10):592–6.

    Article  CAS  PubMed  Google Scholar 

  114. Garrido-Sanchez L, Tome M, Santiago-Fernandez C, et al. Adipose tissue biomarkers involved in early resolution of type 2 diabetes after bariatric surgery. Surg Obes Relat Dis. 2017;13(1):70–7.

    Article  PubMed  Google Scholar 

  115. Querfeld U. Vitamin D and inflammation. Pediatr Nephrol. 2013;28(4):605–10.

    Article  PubMed  Google Scholar 

  116. Liu Y, Aron-Wisnewsky J, Marcelin G, et al. Accumulation and changes in composition of collagens in subcutaneous adipose tissue after bariatric surgery. J Clin Endocrinol Metab. 2016;101(1):293–304.

    Article  CAS  PubMed  Google Scholar 

  117. Moreno-Navarrete JM, Ortega F, Gomez-Serrano M, et al. The MRC1/CD68 ratio is positively associated with adipose tissue lipogenesis and with muscle mitochondrial gene expression in humans. PLoS One. 2013;8(8):e70810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Frikke-Schmidt H, Zamarron BF, O'Rourke RW, et al. Weight loss independent changes in adipose tissue macrophage and T cell populations after sleeve gastrectomy in mice. Mol Metab. 2017;6(4):317–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhang H, Wang Y, Zhang J, et al. Bariatric surgery reduces visceral adipose inflammation and improves endothelial function in type 2 diabetic mice. Arterioscler Thromb Vasc Biol. 2011;31(9):2063–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Bradley D, Conte C, Mittendorfer B, et al. Gastric bypass and banding equally improve insulin sensitivity and beta cell function. J Clin Invest. 2012;122(12):4667–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Xu XJ, Apovian C, Hess D, et al. Improved insulin sensitivity 3 months after RYGB surgery is associated with increased subcutaneous adipose tissue AMPK activity and decreased oxidative stress. Diabetes. 2015;64(9):3155–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hagman DK, Larson I, Kuzma JN, et al. The short-term and long-term effects of bariatric/metabolic surgery on subcutaneous adipose tissue inflammation in humans. Metabolism. 2017;70(5):12–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu L, Feng J, Zhang G, et al. Visceral adipose tissue is more strongly associated with insulin resistance than subcutaneous adipose tissue in Chinese subjects with pre-diabetes. Curr Med Res Opin. 2017;34(1):1–7.

    CAS  Google Scholar 

  124. Kratz M, Coats BR, Hisert KB, et al. Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab. 2014;20(4):614–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Xu X, Grijalva A, Skowronski A, et al. Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell Metab. 2013;18(6):816–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kosteli A, Sugaru E, Haemmerle G, et al. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J Clin Invest. 2010;120(10):3466–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Pendyala S, Neff LM, Suarez-Farinas M, et al. Diet-induced weight loss reduces colorectal inflammation: implications for colorectal carcinogenesis. Am J Clin Nutr. 2011;93(2):234–42.

    Article  CAS  PubMed  Google Scholar 

  128. Li S, Vinci A, Behnsen J, et al. Bariatric surgery attenuates colitis in an obese murine model. Surg Obes Relat Dis. 2017;13(4):661–8.

    Article  PubMed  Google Scholar 

  129. Aminian A, Andalib A, Ver MR, et al. Outcomes of bariatric surgery in patients with inflammatory bowel disease. Obes Surg. 2016;26(6):1186–90.

    Article  PubMed  Google Scholar 

  130. Yin YN, Yu QF, Fu N, et al. Effects of four Bifidobacteria on obesity in high-fat diet induced rats. World J Gastroenterol. 2010;16(27):3394–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Xie N, Cui Y, Yin YN, et al. Effects of two lactobacillus strains on lipid metabolism and intestinal microflora in rats fed a high-cholesterol diet. BMC Complement Altern Med. 2011;11(3):53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Guo Y, Huang ZP, Liu CQ, et al. Modulation of the gut microbiome: a systematic review of the effect of bariatric surgery. Eur J Endocrinol. 2017;178(1):43–56.

    Article  PubMed  Google Scholar 

  133. Liu R, Hong J, Xu X, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med. 2017;23(7):859–68.

    Article  CAS  PubMed  Google Scholar 

  134. Wang C, He B, Piao D, et al. Roux-en-Y esophagojejunostomy ameliorates renal function through reduction of renal inflammatory and fibrotic markers in diabetic nephropathy. Obes Surg. 2016;26(7):1402–13.

    Article  PubMed  Google Scholar 

  135. Neff KJ, Elliott JA, Corteville C, et al. Effect of Roux-en-Y gastric bypass and diet-induced weight loss on diabetic kidney disease in the Zucker diabetic fatty rat. Surg Obes Relat Dis. 2017;13(1):21–7.

    Article  PubMed  Google Scholar 

  136. Fu C, Sheu WHH, Lee IT, et al. Weight loss reduces serum monocyte chemoattractant protein-1 concentrations in association with improvements in renal injury in obese men with metabolic syndrome. Clin Chem Lab Med. 2015;53(4):623–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Key R&D Program of China (2016YFC1305000, 2016YFC1305001), the National Science and Technology Infrastructure Program (2015BAI12B13), the Key Project of Chinese Ministry of Education(113050A), the National Basic Research Program of China (2014CB910500), National Natural Science Foundation of China (81770775, 91749118, 81370017, 81130015 and 81000316), the Planned Science and Technology Project of Hunan Province (2017RS3015) and Natural Science Foundation of Hunan Province, China (14JJ3034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguang Zhou.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Does not apply.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zhang, J., Liu, Z. et al. More than an Anti-diabetic Bariatric Surgery, Metabolic Surgery Alleviates Systemic and Local Inflammation in Obesity. OBES SURG 28, 3658–3668 (2018). https://doi.org/10.1007/s11695-018-3400-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-018-3400-z

Keywords

Navigation