Skip to main content

Advertisement

Log in

Glucose Metabolism Parameters and Post-Prandial GLP-1 and GLP-2 Release Largely Vary in Several Distinct Situations: a Controlled Comparison Among Individuals with Crohn’s Disease and Individuals with Obesity Before and After Bariatric Surgery

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

This study aims to compare the post-prandial curves of glucose, insulin, GLP-1, and GLP-2 among individuals with Crohn’s disease (CD), obese individuals before and after bariatric surgery, and healthy controls.

Methods

This an exploratory cross-sectional study that involved five groups of patients (two groups of individuals with CD—active and inactive), bariatric patients (pre- and post-surgery, who were their own controls), and a distinct separated control group of healthy volunteers. C-reactive protein (CRP) levels and the post-prandial curves of glucose, insulin, GLP-1, and GLP-2 curves were assessed and compared.

Results

The pre-RYGB group presented significantly higher levels of CRP than the post-RYGB (p = 0.001) and the control group (p = 0.001). The inactive CD group presented a higher post-prandial GLP-1 area under the curve (AUC) than the pre-RYGB group (p = 0.009). The post-RYGB group presented significantly higher AUCs of GLP-2 than the pre-RYGB group (p < 0.0001), both inactive and active CD groups (p < 0.0001 in both situations), and the control group (p = 0.002). The pre-RYGB group presented a significantly higher AUC of glucose than the post-RYGB (p = 0.02) and both active and inactive CD groups (p = 0.019 and p = 0.046, respectively). The pre-RYGB group presented a significantly higher AUC of insulin than the control (p = 0.005) and both CD groups (p < 0.0001).

Conclusions

Obesity is associated with an inflammatory state comparable to the one observed in CD; inflammation may also be enrolled in the blockade of GLP-2. CD individuals present a more incretin-driven pattern of glucose metabolism, as a way to prevent hypoglycemia and compensate the carbohydrate malabsorption and GLP-2 blockade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. World Health Organization. Global status report on noncommunicable diseases 2014. WHO: Geneva; 2014. p. 1–298.

    Google Scholar 

  2. Singh S, Dulai PS, Zarrinpar A, et al. Obesity in IBD: epidemiology, pathogenesis, disease course and treatment outcomes. Nat Rev Gastroenterol Hepatol. 2017 Feb;14(2):110–21.

    Article  CAS  PubMed  Google Scholar 

  3. Molodecky NA, Soon IS, Rabi DM, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 2012;142(1):46–54.e42. quiz e30

    Article  PubMed  Google Scholar 

  4. Nic Suibhne T, Raftery TC, McMahon O, et al. High prevalence of overweight and obesity in adults with Crohn’s disease: associations with disease and lifestyle factors. J Crohns Colitis. 2013;7(7):e241–8.

    Article  PubMed  Google Scholar 

  5. Bernstein GR, Pickett-Blakely O. De novo inflammatory bowel disease after bariatric surgery: a case series and literature review. Dig Dis Sci. 2016; https://doi.org/10.1007/s10620-016-4412-y.

  6. Janczewska I, Nekzada Q, Kapraali M. Crohn’s disease after gastric bypass surgery. BMJ Case Rep. 2011; https://doi.org/10.1136/bcr.07.2010.3168.

  7. Ahn LB, Huang CS, Forse RA, et al. Crohn’s disease after gastric bypass surgery for morbid obesity: is there an association? Inflamm Bowel Dis. 2005;11(6):622–4.

    Article  PubMed  Google Scholar 

  8. Kotze PG, Bremer-Nones R, Kotze LM. Is there any relation between gastric bypass for morbid obesity and the development of Crohn’s disease? J Crohns Colitis. 2014;8(7):712–3.

    Article  PubMed  Google Scholar 

  9. Shoar S, Shahabuddin Hoseini S, Naderan M, et al. Bariatric surgery in morbidly obese patients with inflammatory bowel disease: a systematic review. Surg Obes Relat Dis. 2017;13(4):652–9.

    Article  PubMed  Google Scholar 

  10. Harper JW, Zisman TL. Interaction of obesity and inflammatory bowel disease. World J Gastroenterol. 2016;22(35):7868–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bregenzer N, Hartmann A, Strauch U, et al. Increased insulin resistance and beta cell activity in patients with Crohn’s disease. Inflamm Bowel Dis. 2006;12(1):53–6.

    Article  PubMed  Google Scholar 

  12. Nagahori M, Hyun SB, Totsuka T, et al. Prevalence of metabolic syndrome is comparable between inflammatory bowel disease patients and the general population. J Gastroenterol. 2010;45(10):1008–13.

    Article  CAS  PubMed  Google Scholar 

  13. Karrasch T, Obermeier F, Straub RH. Systemic metabolic signaling in acute and chronic gastrointestinal inflammation of inflammatory bowel diseases. Horm Metab Res. 2014;46(6):445–51.

    Article  CAS  PubMed  Google Scholar 

  14. Meek CL, Lewis HB, Reimann F, et al. The effect of bariatric surgery on gastrointestinal and pancreatic peptide hormones. Peptides. 2016;77:28–37.

    Article  CAS  PubMed  Google Scholar 

  15. Lee J, Koehler J, Yusta B, et al. Enteroendocrine-derived glucagon-like peptide-2 controls intestinal amino acid transport. Mol Metab. 2017; https://doi.org/10.1016/j.molmet.2017.01.005.

  16. Cazzo E, Pareja JC, Chaim EA. Weight loss surgery and the surrogate insulin resistance markers HOMA, TyG, and TG/HDL-c in relation to metabolic syndrome. In: Preedy VR, Rajendram R, Martin CR. Metabolism and pathophysiology of bariatric surgery: nutrition, procedures, outcomes and adverse effects. London: Academic Press; 2017. p. 325–31. https://doi.org/10.1016/B978-0-12-804011-9.00055-8.

  17. Jacobsen SH, Olesen SC, Dirksen C, et al. Changes in gastrointestinal hormone responses, insulin sensitivity, and beta-cell function within 2 weeks after gastric bypass in non-diabetic subjects. Obes Surg. 2012;22(7):1084–96.

    Article  CAS  PubMed  Google Scholar 

  18. Cazzo E, Gestic MA, Utrini MP, et al. GLP-2: a poorly understood mediator enrolled in various bariatric/metabolic surgery-related pathophysiologic mechanisms. Arq Bras Cir Dig. 2016;29(4):272–5.

    Article  PubMed  PubMed Central  Google Scholar 

  19. LeRoux CW, Borg C, Wallis K, et al. Gut hypertrophy after gastric bypass is associated with increased glucagon-like peptide 2 and intestinal crypt cell proliferation. Ann Surg. 2010;252(1):50–6.

    Article  Google Scholar 

  20. Taqi E, Wallace LE, de Heuvel E, et al. The influence of nutrients, biliary-pancreatic secretions, and systemic trophic hormones on intestinal adaptation in a Roux-en-Y bypass model. J Pediatr Surg. 2010;45(5):987–95.

    Article  PubMed  Google Scholar 

  21. Cazzo E, Pareja JC, Geloneze B, et al. Postprandial GLP-2 levels are increased after biliopancreatic diversion in diabetic individuals with class I obesity: a prospective study. Obes Surg. 2017; https://doi.org/10.1007/s11695-017-2554-4.

  22. Suzuki S, Ramos EJ, Gonçalves CG, et al. Changes in GI hormones and their effect on gastric emptying and transit times after Roux-en-Y gastric bypass in rat model. Surgery. 2005;138(2):283–90.

    Article  PubMed  Google Scholar 

  23. Huda MS, Wilding JP, Pinkney JH. Gut peptides and the regulation of appetite. Obes Rev. 2006;7(2):163–82.

    Article  CAS  PubMed  Google Scholar 

  24. Vahl T, D'Alessio D. Enteroinsular signaling: perspectives on the role of the gastrointestinal hormones glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide in normal and abnormal glucose metabolism. Curr Opin Clin Nutr Metab Care. 2003;6(4):461–8.

    CAS  PubMed  Google Scholar 

  25. Bendet N, Scapa E, Cohen O, et al. Enhanced glucose-dependent glucagon-like peptide-1 and insulin secretion in Crohn patients with terminal ileum disease is unrelated to disease activity or ileal resection. Scand J Gastroenterol. 2004;39(7):650–6.

    Article  CAS  PubMed  Google Scholar 

  26. Tsukahara T, Watanabe K, Watanabe T, et al. Tumor necrosis factor α decreases glucagon-like peptide-2 expression by up-regulating G-protein-coupled receptor 120 in Crohn disease. Am J Pathol. 2015;185:185–96.

    Article  CAS  PubMed  Google Scholar 

  27. Best WR, Becktel JM, Singleton JW, et al. Development of a Crohn’s disease activity index. National Cooperative Crohn's Disease Study. Gastroenterology. 1976;70:439–44.

    CAS  PubMed  Google Scholar 

  28. Satsangi J, Silverberg MS, Vermeire S, et al. The Montreal classification of inflammatory bowel disease: controversies, consensus, and implications. Gut. 2006;55:749–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. National Institutes of Health. Gastrointestinal surgery for severe obesity: National Institutes of Health Consensus Development Conference Statement. Am J Clin Nutr 1992;55(2 Suppl):615S–619S.

  30. Lee WJ, Huang MT, Wang W, et al. Effects of obesity surgery on the metabolic syndrome. Arch Surg. 2004;139(10):1088–92.

    Article  PubMed  Google Scholar 

  31. Dorman RB, Serrot FJ, Miller CJ, et al. Case-matched outcomes in bariatric surgery for treatment of type 2 diabetes in the morbidly obese patient. Ann Surg. 2012;255(2):287–93.

    Article  PubMed  Google Scholar 

  32. Mumme DE, Mathiason MA, Kallies KJ, et al. Effect of laparoscopic Roux-en-Y gastric bypass surgery on hemoglobin A1c levels in diabetic patients: a matched-cohort analysis. Surg Obes Relat Dis. 2009;5(1):4–10.

    Article  PubMed  Google Scholar 

  33. Schauer PR, Kashyap SR, Wolski K, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366(17):1567–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Adams TD, Gress RE, Smith SC, et al. Long-term mortality after gastric bypass surgery. N Engl J Med. 2007;357(8):753–61.

    Article  CAS  PubMed  Google Scholar 

  35. Batsis JA, Romero-Corral A, Collazo-Clavell ML, et al. Effect of bariatric surgery on the metabolic syndrome: a population-based, long-term controlled study. Mayo Clin Proc. 2008;83(8):897–907.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Inabnet 3rd WB, Winegar DA, Sherif B, et al. Early outcomes of bariatric surgery in patients with metabolic syndrome: an analysis of the bariatric outcomes longitudinal database. J Am Coll Surg. 2012;214(4):550–6.

    Article  PubMed  Google Scholar 

  37. Cazzo E, Gestic MA, Utrini MP, et al. Influence of insulin resistance status on the development of gallstones following Roux-en-Y gastric bypass: a prospective cohort study. Obes Surg. 2016;26(4):769–75.

    Article  PubMed  Google Scholar 

  38. Angrisani L, Santonicola A, Iovino P, et al. Bariatric surgery and endoluminal procedures: IFSO worldwide survey 2014. Obes Surg. 2017; https://doi.org/10.1007/s11695-017-2666-x.

  39. de Hollanda A, Jiménez A, Corcelles R, et al. Gastrointestinal hormones and weight loss response after Roux-en-Y gastric bypass. Surg Obes Relat Dis. 2014;10(5):814–9.

    Article  PubMed  Google Scholar 

  40. le Roux CW, Borg C, Wallis K, et al. Gut hypertrophy after gastric bypass is associated with increased glucagon-like peptide 2 and intestinal crypt cell proliferation. Ann Surg. 2010;252(1):50–6.

    Article  PubMed  Google Scholar 

  41. Romero F, Nicolau J, Flores L, et al. Comparable early changes in gastrointestinal hormones after sleeve gastrectomy and Roux-en-Y gastric bypass surgery for morbidly obese type 2 diabetic subjects. Surg Endosc. 2012;26(8):2231–9.

    Article  PubMed  Google Scholar 

  42. Cazzo E, Pareja JC, Chaim EA, et al. GLP-1 and GLP-2 levels are correlated with satiety regulation after Roux-en-Y gastric bypass: results of an exploratory prospective study. Obes Surg. 2016; https://doi.org/10.1007/s11695-016-2345-3.

  43. Tigas S, Tsatsoulis A. Endocrine and metabolic manifestations in inflammatory bowel disease. Ann Gastroenterol. 2012;25(1):37–44.

    PubMed  PubMed Central  Google Scholar 

  44. Gonçalves P, Magro F, Martel F. Metabolic inflammation in inflammatory bowel disease: crosstalk between adipose tissue and bowel. Inflamm Bowel Dis. 2015;21(2):453–67.

    Article  PubMed  Google Scholar 

  45. Sellin JH, Hart R. Glucose malabsorption associated with rapid intestinal transit. Am J Gastroenterol. 1992;87(5):584–9.

    CAS  PubMed  Google Scholar 

  46. Bjørneklett A, Fausa O, Midtvedt T. Bacterial overgrowth in jejunal and ileal disease. Scand J Gastroenterol. 1983;18(2):289–98.

    Article  PubMed  Google Scholar 

  47. Raithel M, Weidenhiller M, Hagel AF, et al. The malabsorption of commonly occurring mono and disaccharides: levels of investigation and differential diagnoses. Dtsch Arztebl Int. 2013;110(46):775–82.

    PubMed  PubMed Central  Google Scholar 

  48. Hering NA, Fromm M, Schulzke JD. Determinants of colonic barrier function in inflammatory bowel disease and potential therapeutics. J Physiol. 2012;590(5):1035–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tamura A, Hayashi H, Imasato M, et al. Loss of claudin-15, but not claudin-2, causes Na+ deficiency and glucose malabsorption in mouse small intestine. Gastroenterology. 2011;140(3):913–23.

    Article  CAS  PubMed  Google Scholar 

  50. Caradonna L, Amati L, Magrone T, et al. Enteric bacteria, lipopolysaccharides and related cytokines in inflammatory bowel disease: biological and clinical significance. J Endotoxin Res. 2000;6(3):205–14.

    CAS  PubMed  Google Scholar 

  51. Herlitz-Cifuentes HS, Garces PC, Fernandez LI, et al. Effect of systemic inflammation on the function of insulin and glucose metabolism in rheumatoid arthritis. Curr Diabetes Rev. 2015;12(2):156–62.

    Article  PubMed  Google Scholar 

  52. Guerrero-Romero F, Simental-Mendía LE, Rodríguez-Morán M. Association of C-reactive protein levels with fasting and postload glucose levels according to glucose tolerance status. Arch Med Res. 2014;45(1):70–5.

    Article  CAS  PubMed  Google Scholar 

  53. Schmidt PT, Ljung T, Hartmann B, et al. Tissue levels and post-prandial secretion of the intestinal growth factor, glucagon-like peptide-2, in controls and inflammatory bowel disease: comparison with peptide YY. Eur J Gastroenterol Hepatol. 2005;17:207–12.

    Article  CAS  PubMed  Google Scholar 

  54. Sigalet DL, Kravarusic D, Butzner D, et al. A pilot study examining the relationship among Crohn disease activity, glucagon-like peptide-2 signalling and intestinal function in pediatric patients. Can J Gastroenterol. 2013;27:587–92.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Coy CSR, Calixto A, Vasques AC, et al. Evaluation of GLP-2 levels in Crohn’s disease. Inflamm Bowel Dis. 2016;22(Suppl 1):S58.

    Article  Google Scholar 

  56. Divella R, De Luca R, Abbate I, et al. Obesity and cancer: the role of adipose tissue and adipo-cytokines-induced chronic inflammation. J Cancer. 2016;7(15):2346–59.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cooke AA, Connaughton RM, Lyons CL, et al. Fatty acids and chronic low grade inflammation associated with obesity and the metabolic syndrome. Eur J Pharmacol. 2016;785:207–14.

    Article  CAS  PubMed  Google Scholar 

  58. Tarantino G. Gut microbiome, obesity-related comorbidities, and low-grade chronic inflammation. J Clin Endocrinol Metab. 2014;99(7):2343–6.

    Article  CAS  PubMed  Google Scholar 

  59. van Avesaat M, Troost FJ, Ripken D, et al. Ileal brake activation: macronutrient-specific effects on eating behavior? Int J Obes. 2015;39(2):235–43.

    Article  Google Scholar 

  60. Meloni AR, DeYoung MB, Lowe C, et al. GLP-1 receptor activated insulin secretion from pancreatic β-cells: mechanism and glucose dependence. Diabetes Obes Metab. 2013;15(1):15–27.

    Article  CAS  PubMed  Google Scholar 

  61. Ahren B. Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes. Nat Rev Drug Discov. 2009;8(5):369–85.

    Article  CAS  PubMed  Google Scholar 

  62. Eriksson LS. Splanchnic exchange of glucose, amino acids and free fatty acids in patients with chronic inflammatory bowel disease. Gut. 1983;24(12):1161–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee YS, Shin S, Shigihara T, et al. Glucagon-like peptide-1 gene therapy in obese diabetic mice results in long-term cure of diabetes by improving insulin sensitivity and reducing hepatic gluconeogenesis. Diabetes. 2007;56(6):1671–9.

    Article  CAS  PubMed  Google Scholar 

  64. Zietek T, Daniel H. Intestinal nutrient sensing and blood glucose control. Curr Opin Clin Nutr Metab Care. 2015;18(4):381–8.

    Article  CAS  PubMed  Google Scholar 

  65. Magro D, Kotze P, Camargo M, et al. Serum levels of lipopolysaccharides and CD26 in patients with Crohn’s disease. Inflamm Bowel Dis. 2017;23(Suppl 1):S90.

    Google Scholar 

  66. Olszanecka-Glinianowicz M, Zahorska-Markiewicz B, Janowska J, et al. Serum concentrations of nitric oxide, tumor necrosis factor (TNF)-alpha and TNF soluble receptors in women with overweight and obesity. Metabolism. 2004;53(10):1268–73.

    Article  CAS  PubMed  Google Scholar 

  67. Cartier A, Lemieux I, Alméras N, et al. Visceral obesity and plasma glucose-insulin homeostasis: contributions of interleukin-6 and tumor necrosis factor-alpha in men. J Clin Endocrinol Metab. 2008;93(5):1931–8.

    Article  CAS  PubMed  Google Scholar 

  68. Gentile S, Guarino G, Bizzarro A, et al. Infliximab does not interfere with insulin secretion, insulin resistance and production of GAD and islet cell antibodies in patients with Crohn’s disease. Diabetes Obes Metab. 2002;4(4):276–7.

    Article  CAS  PubMed  Google Scholar 

  69. Rosenvinge A, Krogh-Madsen R, Baslund B, et al. Insulin resistance in patients with rheumatoid arthritis: effect of anti-TNFalpha therapy. Scand J Rheumatol. 2007;36(2):91–6.

    Article  CAS  PubMed  Google Scholar 

  70. Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and pancreatic beta-cell dysfunction in diabetes. Curr Diabetes Rev. 2013;9(1):25–53.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Pina T, Armesto S, Lopez-Mejias R, et al. Anti-TNF-α therapy improves insulin sensitivity in non-diabetic patients with psoriasis: a 6-month prospective study. J Eur Acad Dermatol Venereol. 2015;29(7):1325–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Everton Cazzo.

Ethics declarations

Conflict of Interest

Paulo Gustavo Kotze is a speaker and consultant for Abbvie, Ferring, Janssen, and Takeda.

Other authors declare that they have no conflict of interest.

Statement of Informed Consent

Informed consent was obtained from all individual participants included in the study.

Statement of Human and Animal Rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Funding

This study was supported by grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), protocols 2009/50430-6 and 2014/06164-8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magro, D.O., Cazzo, E., Kotze, P.G. et al. Glucose Metabolism Parameters and Post-Prandial GLP-1 and GLP-2 Release Largely Vary in Several Distinct Situations: a Controlled Comparison Among Individuals with Crohn’s Disease and Individuals with Obesity Before and After Bariatric Surgery. OBES SURG 28, 378–388 (2018). https://doi.org/10.1007/s11695-017-2851-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-017-2851-y

Keywords

Navigation