Obesity Surgery

, Volume 27, Issue 9, pp 2338–2346 | Cite as

Impact of Bariatric Surgery on Heme Oxygenase-1, Inflammation, and Insulin Resistance in Morbid Obesity with Obstructive Sleep Apnea

  • Raquel Tirado
  • Maria José Masdeu
  • Laura Vigil
  • Mercedes Rigla
  • Alexis Luna
  • Pere Rebasa
  • Rocío Pareja
  • Marta Hurtado
  • Assumpta Caixàs
Original Contributions



Morbid obesity and obstructive sleep apnea (OSA) interact at an inflammatory level. Bariatric surgery reduces inflammatory responses associated with obesity. Heme oxygenase-1 (HO-1) is an enzyme with anti-inflammatory properties, which might be increased in morbid obesity or OSA. We studied morbidly obese patients with OSA to determine: (a) HO-1 plasma concentrations according to OSA severity and their relationship with insulin resistance and inflammation and (b) the impact of bariatric surgery on HO-1 and parameters of insulin resistance and inflammation.

Material and Methods

We analyzed the homeostasis model insulin resistance index (HOMA) and plasma concentrations of HO-1, tumor necrosis factor alpha, interleukin-6, interleukin-1-beta, C reactive protein (CRP), and adiponectin according to polysomnography findings in 66 morbidly obese patients before bariatric surgery and 12 months after surgery.


Before surgery, HO-1 plasma concentrations were similar in three groups of patients with mild, moderate, and severe OSA, and correlated with HOMA (r = 0.27, p = 0.02). Twelve months after surgery, low-grade inflammation and insulin resistance had decreased in all the groups, but HO-1 plasma concentration had decreased only in the severe OSA group (p = 0.02). In this group, the reduction in HO-1 correlated with a reduction in CRP concentrations (r = 0.43, p = 0.04) and with improved HOMA score (r = 0.37, p = 0.03).


Bariatric surgery decreases HO-1 concentrations in morbid obesity with severe OSA, and this decrease is associated with decreases in insulin resistance and in inflammation.


Heme oxygenase-1 Bariatric surgery Insulin resistance Inflammation OSA 



We thank Belén Pons for help with informatics, Jordi Real for statistical analysis, and David Torrents for help in preparing the manuscript.

Compliance with Ethical Standards

Financial Support

This study was supported by Beques Taulí de Recerca i Innovació 2014/005 Institut d’Investigació i Innovació Parc Taulí (I3PT).

Conflict of Interest

The authors declare that they have no conflict of interest.

Statement of Informed Consent

The authors declare that informed consent was obtained from all individual participants included in the study.

Statement of Ethics

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki Declaration and its later amendments. The study protocol was approved by the Institutional Ethics Committee.


  1. 1.
    Leiter JC. Upper airway shape: is it important in the pathogenesis of obstructive sleep apnea? Am J Respir Crit Care Med. 1996;153(3):894–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Brander PE, Mortimore IL, Douglas NJ. Effect of obesity and erect/supine posture on lateral cephalometry: relationship to sleep-disordered breathing. Eur Respir J. 1999;13(2):398–402.PubMedCrossRefGoogle Scholar
  3. 3.
    Schwab RJ. Genetic determinants of upper airway structures that predispose to obstructive sleep apnea. Respir Physiol Neurobiol. 2005;147(2–3):289–98.PubMedCrossRefGoogle Scholar
  4. 4.
    Borel AL, Leblanc X, Alméras N, et al. Sleep apnoea attenuates the effects of a lifestyle intervention programme in men with visceral obesity. Thorax. 2012;67(8):735–41.PubMedCrossRefGoogle Scholar
  5. 5.
    Kim NH, Cho NH, Yun CH, et al. Association of obstructive sleep apnea and glucose metabolism in subjects with or without obesity. Diabetes Care. 2013;36(12):3909–15.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Togeiro SM, Carneiro G, Ribeiro Filho FF, et al. Consequences of obstructive sleep apnea on metabolic profile: a population-based survey. Obesity (Silver Spring). 2013;21(4):847–51.CrossRefGoogle Scholar
  7. 7.
    Tzanavari T, Giannogonas P, Karalis KP. TNF-alpha and obesity. Curr Dir Autoimmun. 2010;11:145–56.PubMedCrossRefGoogle Scholar
  8. 8.
    Illán-Gómez F, Gonzálvez-Ortega M, Orea-Soler I, et al. Obesity and inflammation: change in adiponectin, C-reactive protein, tumour necrosis factor-alpha and interleukin-6 after bariatric surgery. Obes Surg. 2012;22(6):950–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Terra X, Quintero Y, Auguet T, et al. FABP 4 is associated with inflammatory markers and metabolic syndrome in morbidly obese women. Eur J Endocrinol. 2011;164(4):539–47.PubMedCrossRefGoogle Scholar
  10. 10.
    Ciftci TU, Kokturk O, Bukan N, et al. The relationship between serum cytokine levels with obesity and obstructive sleep apnea syndrome. Cytokine. 2004;28(2):87–91.PubMedCrossRefGoogle Scholar
  11. 11.
    Sahlman J, Miettinen K, Peuhkurinen K, et al. The activation of the inflammatory cytokines in overweight patients with mild obstructive sleep apnoea. J Sleep Res. 2010;19(2):341–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Vgontzas AN, Zoumakis E, Bixler EO, et al. Selective effects of CPAP on sleep apnoea-associated manifestations. Eur J Clin Investig. 2008;38(8):585–95.CrossRefGoogle Scholar
  13. 13.
    Vgontzas AN, Papanicolaou DA, Bixler EO, et al. Sleep apnea and daytime sleepiness and fatigue: relation to visceral obesity, insulin resistance, and hypercytokinemia. J Clin Endocrinol Metab. 2000;85(3):1151–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Constantinidis J, Ereliadis S, Angouridakis N, et al. Cytokine changes after surgical treatment of obstructive sleep apnoea syndrome. Eur Arch Otorhinolaryngol. 2008;265(10):1275–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Auguet T, Terra X, Hernández M, et al. Clinical and adipocytokine changes after bariatric surgery in morbidly obese women. Obesity (Silver Spring). 2014;22(1):188–94.CrossRefGoogle Scholar
  16. 16.
    Guven SF, Turkkani MH, Ciftci B, et al. The relationship between high-sensitivity C-reactive protein levels and the severity of obstructive sleep apnea. Sleep Breath. 2012;16(1):217–21.PubMedCrossRefGoogle Scholar
  17. 17.
    Drager LF, Lopes HF, Maki-Nunes C, et al. The impact of obstructive sleep apnea on metabolic and inflammatory markers in consecutive patients with metabolic syndrome. PLoS One. 2010;5(8):e12065.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Arismendi E, Rivas E, Agustí A, et al. The systemic inflammome of severe obesity before and after bariatric surgery. PLoS One. 2014;9(9):e107859.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    García de la Torre N, Rubio MA, Bordiú E, et al. Effects of weight loss after bariatric surgery for morbid obesity on vascular endothelial growth factor-A, adipocytokines, and insulin. J Clin Endocrinol Metab. 2008;93(11):4276–81.PubMedCrossRefGoogle Scholar
  20. 20.
    Lam JC, Xu A, Tam S, et al. Hypoadiponectinemia is related to sympathetic activation and severity of obstructive sleep apnea. Sleep. 2008;31(12):1721–7.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Nakagawa Y, Kishida K, Kihara S, et al. Nocturnal falls of adiponectin levels in sleep apnea with abdominal obesity and impact of hypoxia-induced dysregulated adiponectin production in obese murine mesenteric adipose tissue. J Atheroscler Thromb. 2011;18(3):240–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Yin J, Gao Z, He Q, et al. Role of hypoxia in obesity-induced disorders of glucose and lipid metabolism in adipose tissue. Am J Physiol Endocrinol Metab. 2009;296(2):E333–42.PubMedCrossRefGoogle Scholar
  23. 23.
    Bonsignore MR, McNicholas WT, Montserrat JM, et al. Adipose tissue in obesity and obstructive sleep apnoea. Eur Respir J. 2012;39(3):746–67.PubMedCrossRefGoogle Scholar
  24. 24.
    Sjöström L. Review of the key results from the Swedish Obese Subjects (SOS) trial—a prospective controlled intervention study of bariatric surgery. J Intern Med. 2013;273(3):219–34.PubMedCrossRefGoogle Scholar
  25. 25.
    Compher C, Badellino KO. Obesity and inflammation: lessons from bariatric surgery. JPEN J Parenter Enteral Nutr. 2008;32(6):645–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Fredheim JM, Rollheim J, Sandbu R, et al. Obstructive sleep apnea after weight loss: a clinical trial comparing gastric bypass and intensive lifestyle intervention. J Clin Sleep Med. 2013;9(5):427–32.PubMedPubMedCentralGoogle Scholar
  27. 27.
    West SD, Nicoll DJ, Wallace TM, et al. Effect of CPAP on insulin resistance and HbA1c in men with obstructive sleep apnoea and type 2 diabetes. Thorax. 2007;62(11):969–74.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Wegiel B, Nemeth Z, Correa-Costa M, et al. Heme oxygenase-1: a metabolic nike. Antioxid Redox Signal. 2014;20(11):1709–22.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Ndisang JF, Lane N, Jadhav A. The heme oxygenase system abates hyperglycemia in Zucker diabetic fatty rats by potentiating insulin-sensitizing pathways. Endocrinology. 2009a;150(5):2098–108.PubMedCrossRefGoogle Scholar
  30. 30.
    Burgess A, Li M, Vanella L, et al. Adipocyte heme oxygenase-1 induction attenuates metabolic syndrome in both male and female obese mice. Hypertension. 2010;56(6):1124–30.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Peterson SJ, Drummond G, Kim DH, et al. L-4F treatment reduces adiposity, increases adiponectin levels, and improves insulin sensitivity in obese mice. J Lipid Res. 2008;49(8):1658–69.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Nicolai A, Li M, Kim DH, et al. Heme oxygenase-1 induction remodels adipose tissue and improves insulin sensitivity in obesity-induced diabetic rats. Hypertension. 2009;53(3):508–15.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Lehr S, Hartwig S, Lamers D, et al. Identification and validation of novel adipokines released from primary human adipocytes. Mol Cell Proteomics. 2012;11(1):M111.010504.PubMedCrossRefGoogle Scholar
  34. 34.
    Shakeri-Manesch S, Zeyda M, Huber J, et al. Diminished upregulation of visceral adipose heme oxygenase-1 correlates with waist-to-hip ratio and insulin resistance. Int J Obes. 2009;33(11):1257–64.CrossRefGoogle Scholar
  35. 35.
    Jais A, Einwallner E, Sharif O, et al. Heme oxygenase-1 drives metaflammation and insulin resistance in mouse and man. Cell. 2014;158(1):25–40.PubMedCrossRefGoogle Scholar
  36. 36.
    Kobayashi M, Miyazawa N, Takeno M, et al. Circulating carbon monoxide level is elevated after sleep in patients with obstructive sleep apnea. Chest. 2008;134(5):904–10.PubMedCrossRefGoogle Scholar
  37. 37.
    Hoffmann MS, Singh P, Wolk R, et al. Microarray studies of genomic oxidative stress and cell cycle responses in obstructive sleep apnea. Antioxid Redox Signal. 2007;9(6):661–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Fried M, Yumuk V, Oppert JM, et al. Interdisciplinary European guidelines on metabolic and bariatric surgery. Rozhl Chir. 2014;93(7):366–78.PubMedGoogle Scholar
  39. 39.
    Baltasar A, Perez N, Serra C, et al. Weight loss reporting: predicted body mass index after bariatric surgery. Obes Surg. 2011;21(3):367–72.PubMedCrossRefGoogle Scholar
  40. 40.
    Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. The report of an American Academy of Sleep Medicine Task Force. Sleep. 1999;22(5):667–89.CrossRefGoogle Scholar
  42. 42.
    Berry RB, Budhiraja R, Gottlieb DJ, et al. Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J Clin Sleep Med. 2012;8(5):597–619.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Ndisang JF, Jadhav A. Up-regulating the hemeoxygenase system enhances insulin sensitivity and improves glucose metabolism in insulin-resistant diabetes in Goto-Kakizaki rats. Endocrinology. 2009;150(6):2627–36.PubMedCrossRefGoogle Scholar
  44. 44.
    Yang L, Quan S, Nasjletti A, et al. Heme oxygenase-1 gene expression modulates angiotensin II-induced increase in blood pressure. Hypertension. 2004;43(6):1221–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Li M, Kim DH, Tsenovoy PL, et al. Treatment of obese diabetic mice with a heme oxygenase inducer reduces visceral and subcutaneous adiposity, increases adiponectin levels, and improves insulin sensitivity and glucose tolerance. Diabetes. 2008;57(6):1526–35.PubMedCrossRefGoogle Scholar
  46. 46.
    Peterson SJ, Kim DH, Li M, et al. The L-4F mimetic peptide prevents insulin resistance through increased levels of HO-1, pAMPK, and pAKT in obese mice. J Lipid Res. 2009;50(7):1293–304.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Cao J, Peterson SJ, Sodhi K, et al. Heme oxygenase gene targeting to adipocytes attenuates adiposity and vascular dysfunction in mice fed a high-fat diet. Hypertension. 2012;60(2):467–75.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Ndisang JF, Lane N, Jadhav A. Upregulation of the heme oxygenase system ameliorates postprandial and fasting hyperglycemia in type 2 diabetes. Am J Physiol Endocrinol Metab. 2009b;296(5):E1029–41.PubMedCrossRefGoogle Scholar
  49. 49.
    Wang XQ, Luo NS, Salah ZQ, et al. Atorvastatin attenuates TNF-alpha production via heme oxygenase-1 pathway in LPS-stimulated RAW264.7 macrophages. Biomed Environ Sci. 2014;27(10):786–93.PubMedGoogle Scholar
  50. 50.
    Bao W, Song F, Li X, et al. Plasma heme oxygenase-1 concentration is elevated in individuals with type 2 diabetes mellitus. PLoS One. 2010;5(8):e12371.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Di Raimondo D, Tuttolomondo A, Buttà C, et al. Effects of ACE-inhibitors and angiotensin receptor blockers on inflammation. Curr Pharm Des. 2012;18(28):4385–413.PubMedCrossRefGoogle Scholar
  52. 52.
    Krysiak R, Zmuda W, Okopien B. The effect of simvastatin-ezetimibe combination therapy on adipose tissue hormones and systemic inflammation in patients with isolated hypercholesterolemia. Cardiovasc Ther. 2014;32(2):40–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Leung PO, Wang SH, Lu SH, et al. Simvastatin inhibits pro-inflammatory mediators through induction of heme oxygenase-1 expression in lipopolysaccharide-stimulated RAW264.7 macrophages. Toxicol Lett. 2011;207(2):159–66.PubMedCrossRefGoogle Scholar
  54. 54.
    Arnardottir ES, Maislin G, Schwab RJ, et al. The interaction of obstructive sleep apnea and obesity on the inflammatory markers C-reactive protein and interleukin-6: the Icelandic Sleep Apnea Cohort. Sleep. 2012;35(7):921–32.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Ekstedt M, Akerstedt T, Söderström M. Microarousals during sleep are associated with increased levels of lipids, cortisol, and blood pressure. Psychosom Med. 2004;66(6):925–31.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Endocrinology and Nutrition DepartmentParc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí, Universitat Autònoma de BarcelonaSabadellSpain
  2. 2.Pneumology DepartmentParc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí, Universitat Autònoma de BarcelonaSabadellSpain
  3. 3.Pneumology DepartmentParc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí, Universitat Autònoma de Barcelona, Ciber de Enfermedades Respiratorias-CiberesSabadellSpain
  4. 4.Surgery DepartmentParc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí, Universitat Autònoma de BarcelonaSabadellSpain

Personalised recommendations