Obesity Surgery

, Volume 27, Issue 9, pp 2338–2346 | Cite as

Impact of Bariatric Surgery on Heme Oxygenase-1, Inflammation, and Insulin Resistance in Morbid Obesity with Obstructive Sleep Apnea

  • Raquel Tirado
  • Maria José Masdeu
  • Laura Vigil
  • Mercedes Rigla
  • Alexis Luna
  • Pere Rebasa
  • Rocío Pareja
  • Marta Hurtado
  • Assumpta Caixàs
Original Contributions



Morbid obesity and obstructive sleep apnea (OSA) interact at an inflammatory level. Bariatric surgery reduces inflammatory responses associated with obesity. Heme oxygenase-1 (HO-1) is an enzyme with anti-inflammatory properties, which might be increased in morbid obesity or OSA. We studied morbidly obese patients with OSA to determine: (a) HO-1 plasma concentrations according to OSA severity and their relationship with insulin resistance and inflammation and (b) the impact of bariatric surgery on HO-1 and parameters of insulin resistance and inflammation.

Material and Methods

We analyzed the homeostasis model insulin resistance index (HOMA) and plasma concentrations of HO-1, tumor necrosis factor alpha, interleukin-6, interleukin-1-beta, C reactive protein (CRP), and adiponectin according to polysomnography findings in 66 morbidly obese patients before bariatric surgery and 12 months after surgery.


Before surgery, HO-1 plasma concentrations were similar in three groups of patients with mild, moderate, and severe OSA, and correlated with HOMA (r = 0.27, p = 0.02). Twelve months after surgery, low-grade inflammation and insulin resistance had decreased in all the groups, but HO-1 plasma concentration had decreased only in the severe OSA group (p = 0.02). In this group, the reduction in HO-1 correlated with a reduction in CRP concentrations (r = 0.43, p = 0.04) and with improved HOMA score (r = 0.37, p = 0.03).


Bariatric surgery decreases HO-1 concentrations in morbid obesity with severe OSA, and this decrease is associated with decreases in insulin resistance and in inflammation.


Heme oxygenase-1 Bariatric surgery Insulin resistance Inflammation OSA 


  1. 1.
    Leiter JC. Upper airway shape: is it important in the pathogenesis of obstructive sleep apnea? Am J Respir Crit Care Med. 1996;153(3):894–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Brander PE, Mortimore IL, Douglas NJ. Effect of obesity and erect/supine posture on lateral cephalometry: relationship to sleep-disordered breathing. Eur Respir J. 1999;13(2):398–402.PubMedCrossRefGoogle Scholar
  3. 3.
    Schwab RJ. Genetic determinants of upper airway structures that predispose to obstructive sleep apnea. Respir Physiol Neurobiol. 2005;147(2–3):289–98.PubMedCrossRefGoogle Scholar
  4. 4.
    Borel AL, Leblanc X, Alméras N, et al. Sleep apnoea attenuates the effects of a lifestyle intervention programme in men with visceral obesity. Thorax. 2012;67(8):735–41.PubMedCrossRefGoogle Scholar
  5. 5.
    Kim NH, Cho NH, Yun CH, et al. Association of obstructive sleep apnea and glucose metabolism in subjects with or without obesity. Diabetes Care. 2013;36(12):3909–15.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Togeiro SM, Carneiro G, Ribeiro Filho FF, et al. Consequences of obstructive sleep apnea on metabolic profile: a population-based survey. Obesity (Silver Spring). 2013;21(4):847–51.CrossRefGoogle Scholar
  7. 7.
    Tzanavari T, Giannogonas P, Karalis KP. TNF-alpha and obesity. Curr Dir Autoimmun. 2010;11:145–56.PubMedCrossRefGoogle Scholar
  8. 8.
    Illán-Gómez F, Gonzálvez-Ortega M, Orea-Soler I, et al. Obesity and inflammation: change in adiponectin, C-reactive protein, tumour necrosis factor-alpha and interleukin-6 after bariatric surgery. Obes Surg. 2012;22(6):950–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Terra X, Quintero Y, Auguet T, et al. FABP 4 is associated with inflammatory markers and metabolic syndrome in morbidly obese women. Eur J Endocrinol. 2011;164(4):539–47.PubMedCrossRefGoogle Scholar
  10. 10.
    Ciftci TU, Kokturk O, Bukan N, et al. The relationship between serum cytokine levels with obesity and obstructive sleep apnea syndrome. Cytokine. 2004;28(2):87–91.PubMedCrossRefGoogle Scholar
  11. 11.
    Sahlman J, Miettinen K, Peuhkurinen K, et al. The activation of the inflammatory cytokines in overweight patients with mild obstructive sleep apnoea. J Sleep Res. 2010;19(2):341–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Vgontzas AN, Zoumakis E, Bixler EO, et al. Selective effects of CPAP on sleep apnoea-associated manifestations. Eur J Clin Investig. 2008;38(8):585–95.CrossRefGoogle Scholar
  13. 13.
    Vgontzas AN, Papanicolaou DA, Bixler EO, et al. Sleep apnea and daytime sleepiness and fatigue: relation to visceral obesity, insulin resistance, and hypercytokinemia. J Clin Endocrinol Metab. 2000;85(3):1151–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Constantinidis J, Ereliadis S, Angouridakis N, et al. Cytokine changes after surgical treatment of obstructive sleep apnoea syndrome. Eur Arch Otorhinolaryngol. 2008;265(10):1275–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Auguet T, Terra X, Hernández M, et al. Clinical and adipocytokine changes after bariatric surgery in morbidly obese women. Obesity (Silver Spring). 2014;22(1):188–94.CrossRefGoogle Scholar
  16. 16.
    Guven SF, Turkkani MH, Ciftci B, et al. The relationship between high-sensitivity C-reactive protein levels and the severity of obstructive sleep apnea. Sleep Breath. 2012;16(1):217–21.PubMedCrossRefGoogle Scholar
  17. 17.
    Drager LF, Lopes HF, Maki-Nunes C, et al. The impact of obstructive sleep apnea on metabolic and inflammatory markers in consecutive patients with metabolic syndrome. PLoS One. 2010;5(8):e12065.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Arismendi E, Rivas E, Agustí A, et al. The systemic inflammome of severe obesity before and after bariatric surgery. PLoS One. 2014;9(9):e107859.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    García de la Torre N, Rubio MA, Bordiú E, et al. Effects of weight loss after bariatric surgery for morbid obesity on vascular endothelial growth factor-A, adipocytokines, and insulin. J Clin Endocrinol Metab. 2008;93(11):4276–81.PubMedCrossRefGoogle Scholar
  20. 20.
    Lam JC, Xu A, Tam S, et al. Hypoadiponectinemia is related to sympathetic activation and severity of obstructive sleep apnea. Sleep. 2008;31(12):1721–7.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Nakagawa Y, Kishida K, Kihara S, et al. Nocturnal falls of adiponectin levels in sleep apnea with abdominal obesity and impact of hypoxia-induced dysregulated adiponectin production in obese murine mesenteric adipose tissue. J Atheroscler Thromb. 2011;18(3):240–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Yin J, Gao Z, He Q, et al. Role of hypoxia in obesity-induced disorders of glucose and lipid metabolism in adipose tissue. Am J Physiol Endocrinol Metab. 2009;296(2):E333–42.PubMedCrossRefGoogle Scholar
  23. 23.
    Bonsignore MR, McNicholas WT, Montserrat JM, et al. Adipose tissue in obesity and obstructive sleep apnoea. Eur Respir J. 2012;39(3):746–67.PubMedCrossRefGoogle Scholar
  24. 24.
    Sjöström L. Review of the key results from the Swedish Obese Subjects (SOS) trial—a prospective controlled intervention study of bariatric surgery. J Intern Med. 2013;273(3):219–34.PubMedCrossRefGoogle Scholar
  25. 25.
    Compher C, Badellino KO. Obesity and inflammation: lessons from bariatric surgery. JPEN J Parenter Enteral Nutr. 2008;32(6):645–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Fredheim JM, Rollheim J, Sandbu R, et al. Obstructive sleep apnea after weight loss: a clinical trial comparing gastric bypass and intensive lifestyle intervention. J Clin Sleep Med. 2013;9(5):427–32.PubMedPubMedCentralGoogle Scholar
  27. 27.
    West SD, Nicoll DJ, Wallace TM, et al. Effect of CPAP on insulin resistance and HbA1c in men with obstructive sleep apnoea and type 2 diabetes. Thorax. 2007;62(11):969–74.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Wegiel B, Nemeth Z, Correa-Costa M, et al. Heme oxygenase-1: a metabolic nike. Antioxid Redox Signal. 2014;20(11):1709–22.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Ndisang JF, Lane N, Jadhav A. The heme oxygenase system abates hyperglycemia in Zucker diabetic fatty rats by potentiating insulin-sensitizing pathways. Endocrinology. 2009a;150(5):2098–108.PubMedCrossRefGoogle Scholar
  30. 30.
    Burgess A, Li M, Vanella L, et al. Adipocyte heme oxygenase-1 induction attenuates metabolic syndrome in both male and female obese mice. Hypertension. 2010;56(6):1124–30.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Peterson SJ, Drummond G, Kim DH, et al. L-4F treatment reduces adiposity, increases adiponectin levels, and improves insulin sensitivity in obese mice. J Lipid Res. 2008;49(8):1658–69.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Nicolai A, Li M, Kim DH, et al. Heme oxygenase-1 induction remodels adipose tissue and improves insulin sensitivity in obesity-induced diabetic rats. Hypertension. 2009;53(3):508–15.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Lehr S, Hartwig S, Lamers D, et al. Identification and validation of novel adipokines released from primary human adipocytes. Mol Cell Proteomics. 2012;11(1):M111.010504.PubMedCrossRefGoogle Scholar
  34. 34.
    Shakeri-Manesch S, Zeyda M, Huber J, et al. Diminished upregulation of visceral adipose heme oxygenase-1 correlates with waist-to-hip ratio and insulin resistance. Int J Obes. 2009;33(11):1257–64.CrossRefGoogle Scholar
  35. 35.
    Jais A, Einwallner E, Sharif O, et al. Heme oxygenase-1 drives metaflammation and insulin resistance in mouse and man. Cell. 2014;158(1):25–40.PubMedCrossRefGoogle Scholar
  36. 36.
    Kobayashi M, Miyazawa N, Takeno M, et al. Circulating carbon monoxide level is elevated after sleep in patients with obstructive sleep apnea. Chest. 2008;134(5):904–10.PubMedCrossRefGoogle Scholar
  37. 37.
    Hoffmann MS, Singh P, Wolk R, et al. Microarray studies of genomic oxidative stress and cell cycle responses in obstructive sleep apnea. Antioxid Redox Signal. 2007;9(6):661–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Fried M, Yumuk V, Oppert JM, et al. Interdisciplinary European guidelines on metabolic and bariatric surgery. Rozhl Chir. 2014;93(7):366–78.PubMedGoogle Scholar
  39. 39.
    Baltasar A, Perez N, Serra C, et al. Weight loss reporting: predicted body mass index after bariatric surgery. Obes Surg. 2011;21(3):367–72.PubMedCrossRefGoogle Scholar
  40. 40.
    Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. The report of an American Academy of Sleep Medicine Task Force. Sleep. 1999;22(5):667–89.CrossRefGoogle Scholar
  42. 42.
    Berry RB, Budhiraja R, Gottlieb DJ, et al. Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J Clin Sleep Med. 2012;8(5):597–619.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Ndisang JF, Jadhav A. Up-regulating the hemeoxygenase system enhances insulin sensitivity and improves glucose metabolism in insulin-resistant diabetes in Goto-Kakizaki rats. Endocrinology. 2009;150(6):2627–36.PubMedCrossRefGoogle Scholar
  44. 44.
    Yang L, Quan S, Nasjletti A, et al. Heme oxygenase-1 gene expression modulates angiotensin II-induced increase in blood pressure. Hypertension. 2004;43(6):1221–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Li M, Kim DH, Tsenovoy PL, et al. Treatment of obese diabetic mice with a heme oxygenase inducer reduces visceral and subcutaneous adiposity, increases adiponectin levels, and improves insulin sensitivity and glucose tolerance. Diabetes. 2008;57(6):1526–35.PubMedCrossRefGoogle Scholar
  46. 46.
    Peterson SJ, Kim DH, Li M, et al. The L-4F mimetic peptide prevents insulin resistance through increased levels of HO-1, pAMPK, and pAKT in obese mice. J Lipid Res. 2009;50(7):1293–304.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Cao J, Peterson SJ, Sodhi K, et al. Heme oxygenase gene targeting to adipocytes attenuates adiposity and vascular dysfunction in mice fed a high-fat diet. Hypertension. 2012;60(2):467–75.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Ndisang JF, Lane N, Jadhav A. Upregulation of the heme oxygenase system ameliorates postprandial and fasting hyperglycemia in type 2 diabetes. Am J Physiol Endocrinol Metab. 2009b;296(5):E1029–41.PubMedCrossRefGoogle Scholar
  49. 49.
    Wang XQ, Luo NS, Salah ZQ, et al. Atorvastatin attenuates TNF-alpha production via heme oxygenase-1 pathway in LPS-stimulated RAW264.7 macrophages. Biomed Environ Sci. 2014;27(10):786–93.PubMedGoogle Scholar
  50. 50.
    Bao W, Song F, Li X, et al. Plasma heme oxygenase-1 concentration is elevated in individuals with type 2 diabetes mellitus. PLoS One. 2010;5(8):e12371.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Di Raimondo D, Tuttolomondo A, Buttà C, et al. Effects of ACE-inhibitors and angiotensin receptor blockers on inflammation. Curr Pharm Des. 2012;18(28):4385–413.PubMedCrossRefGoogle Scholar
  52. 52.
    Krysiak R, Zmuda W, Okopien B. The effect of simvastatin-ezetimibe combination therapy on adipose tissue hormones and systemic inflammation in patients with isolated hypercholesterolemia. Cardiovasc Ther. 2014;32(2):40–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Leung PO, Wang SH, Lu SH, et al. Simvastatin inhibits pro-inflammatory mediators through induction of heme oxygenase-1 expression in lipopolysaccharide-stimulated RAW264.7 macrophages. Toxicol Lett. 2011;207(2):159–66.PubMedCrossRefGoogle Scholar
  54. 54.
    Arnardottir ES, Maislin G, Schwab RJ, et al. The interaction of obstructive sleep apnea and obesity on the inflammatory markers C-reactive protein and interleukin-6: the Icelandic Sleep Apnea Cohort. Sleep. 2012;35(7):921–32.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Ekstedt M, Akerstedt T, Söderström M. Microarousals during sleep are associated with increased levels of lipids, cortisol, and blood pressure. Psychosom Med. 2004;66(6):925–31.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Endocrinology and Nutrition DepartmentParc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí, Universitat Autònoma de BarcelonaSabadellSpain
  2. 2.Pneumology DepartmentParc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí, Universitat Autònoma de BarcelonaSabadellSpain
  3. 3.Pneumology DepartmentParc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí, Universitat Autònoma de Barcelona, Ciber de Enfermedades Respiratorias-CiberesSabadellSpain
  4. 4.Surgery DepartmentParc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí, Universitat Autònoma de BarcelonaSabadellSpain

Personalised recommendations