Skip to main content

Impact of Bariatric Surgery on Metabolic and Gut Microbiota Profile: a Systematic Review and Meta-analysis


We aim to review the available literature on obese patients treated with bariatric procedures, in order to assess their effect on the metabolic and gut microbiota profiles. A systematic literature search was performed in PubMed, Cochrane library, and Scopus databases, in accordance with the PRISMA guidelines. Twenty-two studies (562 patients) met the inclusion criteria. This study points to significant amelioration of postoperative levels of glucose, insulin, triglycerides, total cholesterol, LDL, HDL, HOMA-IR, food intake, and diabetes remission. Branched-chain amino acids (BCAAs) decreased, while trimethylamine-n-oxide (TMAO); glucagon-like peptide 1, 2 (GLP-1, GLP-2); and peptide YY (PYY) increased postoperatively. Postoperative gut microbiota was similar to that of lean and less obese objects. Well-designed randomized trials are necessary to further assess the host metabolic-microbial cross-talk after bariatric procedures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Flegal KM, Carroll MD, Kit BK, et al. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. J Am Med Assoc. 2012;307(5):491–7.

    Article  Google Scholar 

  2. 2.

    Sjφstrφm L, Peltonen M, Jacobson P, et al. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA. American Medical Association. 2014;311:2297–304. doi:10.1001/jama.2014.5988.

    Article  Google Scholar 

  3. 3.

    Sjφstrφm L, Peltonen M, Jacobson P, et al. Bariatric surgery and long-term cardiovascular events. JAMA American Medical Association. 2012;307:56–65.

    Article  Google Scholar 

  4. 4.

    Stewart B, WCP editors. IA for R on CW. World cancer report 2014. 2014; Available:

  5. 5.

    Colquit JL, Picot J, Loveman E, et al. Surgery for obesity. Cochrane Database Syst Rev. 2009;(2):CD003641.

  6. 6.

    Kaska L, Sledzinski T, Chomiczewska A, et al. Improved glucose metabolism following bariatric surgery is associated with increased circulating bile acid concentrations and remodeling of the gut microbiome. World J Gastroenterol. 2016;22(39):8698–719.

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Quercia I, Dutia R, Kotler DP, et al. Gastrointestinal changes after bariatric surgery. Diabetes Metab. 2014;40:87–94. doi:10.1016/j.diabet.2013.11.003.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Ley RE, Turnbaugh PJ, Klein S, et al. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–3.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Flint HJ. Obesity and the gut microbiota. J Clin Gastroenterol. 2011;45(Suppl):S128–32.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Li JV, Ashrafian H, Bueter M, et al. Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk. Gut. 2011;60(9):1214–23.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Ashrafian H, Li JV, Spagou K, et al. Bariatric surgery modulates circulating and cardiac metabolites. J Proteome Res. 2014;13:570–80. doi:10.1021/pr400748f.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6:e1000100.

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Higgins JPT, Green S. Cochrane handbook for systematic reviews of interventions version 5.1.0 [updated March 2011]. The Cochrane Collaboration. 2011 Available from

  15. 15.

    Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25:603–5.

    Article  PubMed  Google Scholar 

  16. 16.

    H.J. GSE. (2011) Cochrane handbook for systematic reviews of interventions version 5.1.0 [updated March 2011]

  17. 17.

    Egger M, Smith DG, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Alamuddin N, Vetter ML, Ahima RS, et al. Changes in fasting and prandial gut and adiposity hormones following vertical sleeve gastrectomy or Roux-en-Y-gastric bypass: an 18-month prospective study. Obes Surg. 2016; doi:10.1007/s11695-016-2505-5.

    PubMed  Google Scholar 

  19. 19.

    Arora T, Velagapudi V, Pournaras DJ, et al. Roux-en-Y gastric bypass surgery induces early plasma metabolomic and lipidomic alterations in humans associated with diabetes remission. PLoS One. 2015;10(5):e0126401. doi:10.1371/journal.pone.0126401.

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Federico A, Dallio M, Tolone S, et al. Gastrointestinal hormones, intestinal microbiota and metabolic homeostasis in obese patients: effect of bariatric surgery. in vivo. 2016;30:321–30.

    CAS  PubMed  Google Scholar 

  21. 21.

    Furet JP, Kong LC, Tap J, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010;59(12):3049–57. doi:10.2337/db10-0253.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Graessler J, Qin Y, Zhong H, et al. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. The Pharmacogenomics Journal. 2013;13:514–22. doi:10.1038/tpj.2012.43.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Gralka E, Luchinat C, Tenori L, et al. Metabolomic fingerprint of severe obesity is dynamically affected by bariatric surgery in a procedure-dependent manner. Am J Clin Nutr. 2015; doi:10.3945/ajcn.115.110536.

    PubMed  Google Scholar 

  24. 24.

    Ishida RK, Faintuch J, Ribeiro AS, et al. Asymptomatic gastric bacterial overgrowth after bariatric surgery: are long-term metabolic consequences possible? Obes Surg. 2014;24:1856–61. doi:10.1007/s11695-014-1277-z.

    Article  PubMed  Google Scholar 

  25. 25.

    Jüllig M, Yip S, Xu A, et al. Lower fetuin-A, retinol binding protein 4 and several metabolites after gastric bypass compared to sleeve gastrectomy in patients with type 2 diabetes. PLoS One. 2014;9(5):e96489. doi:10.1371/journal.pone.0096489.

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Karamanakos SN, Vagenas K, Kalfarentzos F, et al. Weight loss, appetite suppression, and changes in fasting and postprandial ghrelin and peptide-YY levels after Roux-en-Y gastric bypass and sleeve gastrectomy: a prospective, double blind study. Ann Surg. 2008;247:401–7.

    Article  PubMed  Google Scholar 

  27. 27.

    Kong LC, Tap J, Aron-Wisnewsky J, et al. Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. Am J Clin Nutr. 2013;98:16–24.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Lips MA, Van Klinken JB, van Harmelen V, et al. Roux-en-Y gastric bypass surgery, but not calorie restriction, reduces plasma branched-chain amino acids in obese women independent of weight loss or the presence of type 2 diabetes. Diabetes Care. 2014;37:3150–6. doi:10.2337/dc14-0195.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Lopes TIB, Geloneze B, Pareja JC, et al. “Omics” prospective monitoring of bariatric surgery: Roux-en-Y gastric bypass outcomes using mixed-meal tolerance test and time-resolved 1H NMR-based metabolomics. OMICS A J Integ Biol 2016;20(7). doi:10.1089/omi.2016.0061

  30. 30.

    Magkos F, Bradley D, Schweitzer GG, et al. Effect of Roux-en-Y gastric bypass and laparoscopic adjustable gastric banding on branched-chain amino acid metabolism. Diabetes 2013;62. DOI: 10.2337/db13-0185.

  31. 31.

    Murphy R, Tsai P, Jüllig M, et al. Differential changes in gut microbiota after gastric bypass and sleeve gastrectomy bariatric surgery vary according to diabetes remission. Obes Surg. 2016; doi:10.1007/s11695-016-2399-2.

    Google Scholar 

  32. 32.

    Narath SH, Mautner SI, Svehlikova E, et al. An untargeted metabolomics approach to characterize short-term and long-term metabolic changes after bariatric surgery. PLoS One. 2016;11(9):e0161425. doi:10.1371/journal.pone.0161425.

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Palleja A, Kashani A, Allin KH, et al. Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Medicine. 2016;8:67. doi:10.1186/s13073-016-0312-1.

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Papamargaritis D, le Roux CW, Sioka E, et al. Changes in gut hormone profile and glucose homeostasis after laparoscopic sleeve gastrectomy. Surg Obes Relat Dis. 2013;9:192–201.

    Article  PubMed  Google Scholar 

  35. 35.

    Patrone V, Vajana E, Minuti A, et al. Postoperative changes in fecal bacterial communities and fermentation products in obese patients undergoing bilio-intestinal bypass. Front Microbiol. 2016;7:200. doi:10.3389/fmicb.2016.00200.

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Peterli R, Wφlnerhanssen B, Peters T, et al. Improvement in glucose metabolism after bariatric surgery: comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: a prospective randomized trial. Ann Surg. 2009 Aug;250(2):234–41. doi:10.1097/SLA.0b013e3181ae32e3.

    Article  PubMed  Google Scholar 

  37. 37.

    Tremaroli V, Karlsson F, Werling M, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22:228–38. doi:10.1016/j.cmet.2015.07.009.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Trøseid M, Hov JR, Nestvold TK, et al. Major increase in microbiota-dependent proatherogenic metabolite TMAO one year after bariatric surgery. METABOLIC SYNDROME AND RELATED DISORDERS Volume 14, Number 4, 2016 DOI: 10.1089/met.2015.0120

  39. 39.

    Valderas JP, Irribarra V, Rubio L, et al. Effects of sleeve gastrectomy and medical treatment for obesity on glucagon-like peptide 1 levels and glucose homeostasis in non-diabetic subjects. Obes Surg. 2011;21:902–9. doi:10.1007/s11695-011-0375-4.

    Article  PubMed  Google Scholar 

  40. 40.

    Ley RE, Bäckhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102:11070–5. doi:10.1073/pnas.0504978102.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Turnbaugh PJ, Bδckhed F, Fulton L, et al. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3:213–23. doi:10.1016/j.chom.2008.02.015.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Buchwald H, Oien DM. Metabolic/bariatric surgery worldwide 2011. Obes Surg. 2013;23:427–36.

    Article  PubMed  Google Scholar 

  43. 43.

    Horowitz M, Cook DJ, Collins PJ, et al. Measurement of gastric emptying after gastric bypass surgery using radionuclides. Br J Surg. 1982;69:655–7.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Melissas J, Koukouraki S, Askoxylakis J, et al. Sleeve gastrectomy: a restrictive procedure? Obes Surg. 2007;17:57–62.

    Article  PubMed  Google Scholar 

  45. 45.

    Thaler JP, Cummings DE. Minireview: Hormonal and metabolic mechanisms of diabetes remission after gastrointestinal surgery. Endocrinology. 2009;150:2518–25.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg. 2006;244:741–9.

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Newgard CB, An J, Bain JR, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9:311–26.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Adeva MM, Calviρo J, Souto G, et al. Insulin resistance and the metabolism of branched-chain amino acids in humans. Amino Acids. 2012;43:171–81.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Saha AK, Xu XJ, Balon TW, et al. Insulin resistance due to nutrient excess: is it a consequence of AMPK downregulation? Cell Cycle. 2011;10:3447–51.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Saha AK, Xu XJ, Lawson E, et al. Downregulation of AMPK accompanies leucine- and glucose-induced increases in protein synthesis and insulin resistance in rat skeletal muscle. Diabetes. 2010;59:2426–34.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Newgard CB. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 2012;15:606–14.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Magouliotis DE, Tasiopoulou VS, Sioka E, et al. Robotic versus laparoscopic sleeve gastrectomy for morbid obesity: a systematic review and meta-analysis. Obes Surg. 2017;27:245. doi:10.1007/s11695-016-2444-1.

    Article  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Dimitrios E. Magouliotis.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent does not apply.


The authors received no financial support for the research, authorship, and/or publication of this article.

Electronic supplementary material

Figure S1

(DOCX 127 kb)

Figure S2

(DOCX 98 kb)

Figure S3

(DOCX 115 kb)

Figure S4

(DOCX 109 kb)

Figure S5

(DOCX 85 kb)

Table S1

(DOCX 98 kb)

Table S2

(DOCX 68 kb)

Table S3

(DOCX 61 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Magouliotis, D.E., Tasiopoulou, V.S., Sioka, E. et al. Impact of Bariatric Surgery on Metabolic and Gut Microbiota Profile: a Systematic Review and Meta-analysis. OBES SURG 27, 1345–1357 (2017).

Download citation


  • Bariatric surgery
  • RYGB
  • SG
  • AGB
  • Gut microbiota
  • Metabolites