Skip to main content

Advertisement

Log in

Fasting Circulating Glicentin Increases After Bariatric Surgery

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Introduction

Bariatric surgery including the Roux-en-Y gastric bypass (RYGB) and the laparoscopic sleeve gastrectomy (LSG) is a well-established therapeutic option for patients with morbid or severe obesity. Metabolic modifications observed after bariatric surgery are thought to be, at least partly, linked to hormonal changes. While variation of several proglucagon-derived peptides during bariatric surgery is well documented, little is known about glicentin. The aim of this study was to investigate circulating glicentin variations after bariatric surgery.

Material and Methods

Thirty patients eligible for bariatric surgery (18 RYGB and 12 LSG procedures) were prospectively included in the University Hospital of Nice. Clinical data and fasting biological parameters were recorded preoperatively, at 3, 6, and 12 months after bariatric surgery.

Results

The median age of patients was 51 years (35–56) with 33.3% men. Fasting glicentin concentration increased progressively after bariatric surgery from 6 months and was more marked at 12 months (14 ± 3.6 pmol/L at baseline vs 19.7 ± 2.7 pmol/L at 12 months for RYGB and 12.5 ± 1.4 vs 16.4 ± 1.8 pmol/L for LSG, respectively). Compared to preoperative values, the fold increase of glicentin at 12 months was 2 ± 0.2 in the RYGB group and 1.6 ± 0.3 in the LSG group. Glicentin variation after surgery did not correlate with anthropometric, glycemic, or lipid parameter modifications.

Conclusion

Fasting glicentin level increases after bariatric surgery suggesting the potential interest of this peptide as a player and/or a marker of physiological changes after bariatric surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Abbreviations

ALT:

Aspartate aminotransferase

AST:

Alanine aminotransferase

BMI:

Body mass index

GGT:

Gamma glutamyltransferase

GLP-1:

Glucagon-like peptide-1

GLP-2:

Glucagon-like peptide-2

HDL:

High-density lipoprotein

HOMA-IR:

Homeostasis model assessment for insulin resistance

LDL:

Low-density lipoprotein

LSG:

Laparoscopic sleeve gastrectomy

RYGB:

Roux-en-Y gastric bypass

References

  1. Sjostrom L, Lindroos AK, Peltonen M, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351(26):2683–93.

    Article  PubMed  Google Scholar 

  2. Buchwald H, Estok R, Fahrbach K, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122(3):248–56.

    Article  PubMed  Google Scholar 

  3. Jensen MD, Ryan DH, Apovian CM, et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation. 2014;129(25 Suppl 2):S102–38.

    Article  PubMed  Google Scholar 

  4. Buchwald H, Oien DM. Metabolic/bariatric surgery worldwide 2008. Obes Surg. 2009;19(12):1605–11.

    Article  PubMed  Google Scholar 

  5. Piche ME, Auclair A, Harvey J, et al. How to choose and use bariatric surgery in 2015. Can J Cardiol. 2015;31(2):153–66.

    Article  PubMed  Google Scholar 

  6. Holst JJ. Enteroendocrine secretion of gut hormones in diabetes, obesity and after bariatric surgery. Curr Opin Pharmacol. 2013;13(6):983–8.

    Article  CAS  PubMed  Google Scholar 

  7. Papamargaritis D, Miras AD, le Roux CW. Influence of diabetes surgery on gut hormones and incretins. Nutr Hosp. 2013;28(Suppl 2):95–103.

    CAS  PubMed  Google Scholar 

  8. Ionut V, Burch M, Youdim A, et al. Gastrointestinal hormones and bariatric surgery-induced weight loss. Obesity (Silver Spring). 2013;21(6):1093–103.

    Article  CAS  Google Scholar 

  9. Dirksen C, Jorgensen NB, Bojsen-Moller KN, et al. Mechanisms of improved glycaemic control after Roux-en-Y gastric bypass. Diabetologia. 2012;55(7):1890–901.

    Article  CAS  PubMed  Google Scholar 

  10. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132(6):2131–57.

    Article  CAS  PubMed  Google Scholar 

  11. Holst JJ. Enteroglucagon. Annu Rev Physiol. 1997;59:257–71.

    Article  CAS  PubMed  Google Scholar 

  12. Hage MP, Safadi B, Salti I, et al. Role of gut-related peptides and other hormones in the amelioration of type 2 diabetes after Roux-en-Y gastric bypass surgery. ISRN Endocrinol. 2012;2012:504756.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sala PC, Torrinhas RS, Giannella-Neto D, et al. Relationship between gut hormones and glucose homeostasis after bariatric surgery. Diabetol Metab Syndr. 2014;6(1):87.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kirkegaard P, Moody AJ, Holst JJ, et al. Glicentin inhibits gastric acid secretion in the rat. Nature. 1982;297(5862):156–7.

    Article  CAS  PubMed  Google Scholar 

  15. Myojo S, Tsujikawa T, Sasaki M, et al. Trophic effects of glicentin on rat small-intestinal mucosa in vivo and in vitro. J Gastroenterol. 1997;32(3):300–5.

    Article  CAS  PubMed  Google Scholar 

  16. Pellissier S, Sasaki K, Le-Nguyen D, et al. Oxyntomodulin and glicentin are potent inhibitors of the fed motility pattern in small intestine. Neurogastroenterol Motil. 2004;16(4):455–63.

    Article  CAS  PubMed  Google Scholar 

  17. Tomita R, Igarashi S, Tanjoh K, et al. Role of recombinant human glicentin in the normal human jejunum: an in vitro study. Hepato-Gastroenterology. 2005;52(65):1459–62.

    CAS  PubMed  Google Scholar 

  18. Ohneda A, Ohneda K, Nagasaki T, et al. Insulinotropic action of human glicentin in dogs. Metabolism. 1995;44(1):47–51.

    Article  CAS  PubMed  Google Scholar 

  19. Manell H, Staaf J, Manukyan L, et al. Altered plasma levels of glucagon, GLP-1 and glicentin during OGTT in adolescents with obesity and type 2 diabetes. J Clin Endocrinol Metab. 2016;101(3):1181–9.

    Article  CAS  PubMed  Google Scholar 

  20. Naito H, Ohneda A, Kojima R, et al. Plasma glicentin in diabetic and gastrectomized patients. Regul Pept. 1999;79(1):55–61.

    Article  CAS  PubMed  Google Scholar 

  21. Wewer Albrechtsen NJ, Kuhre RE, Torang S, et al. The intestinal distribution pattern of appetite- and glucose regulatory peptides in mice, rats and pigs. BMC Res Notes. 2016;9:60.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gunawardene AR, Corfe BM, Staton CA. Classification and functions of enteroendocrine cells of the lower gastrointestinal tract. Int J Exp Pathol. 2011;92(4):219–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rodier G, Magous R, Mochizuki T, et al. Glicentin and oxyntomodulin modulate both the phosphoinositide and cyclic adenosine monophosphate signaling pathways in gastric myocytes. Endocrinology. 1999;140(1):22–8.

    Article  CAS  PubMed  Google Scholar 

  24. Ayachi SE, Borie F, Magous R, et al. Contraction induced by glicentin on smooth muscle cells from the human colon is abolished by exendin (9-39). Neurogastroenterol Motil. 2005;17(2):302–9.

    Article  CAS  PubMed  Google Scholar 

  25. Quercia I, Dutia R, Kotler DP, et al. Gastrointestinal changes after bariatric surgery. Diabetes Metab. 2014;40(2):87–94.

    Article  CAS  PubMed  Google Scholar 

  26. Ohneda A, Takahashi H, Maruyama Y. Response of plasma glicentin to fat ingestion in piglets. Diabetes Res Clin Pract. 1987;3(2):103–9.

    Article  CAS  PubMed  Google Scholar 

  27. Ohneda A, Kobayashi T, Nihei J, et al. Effect of intraluminal administration of amino acids upon plasma glicentin. Diabetes Res Clin Pract. 1988;5(4):265–70.

    Article  CAS  PubMed  Google Scholar 

  28. Shimizu T, Tadokoro R, Kaneko N, et al. Effects of extremely early enteral feeding on plasma glicentin levels in very-low-birthweight infants. J Paediatr Child Health. 2006;42(10):636–9.

    Article  PubMed  Google Scholar 

  29. Cummings DE, Overduin J, Foster-Schubert KE. Gastric bypass for obesity: mechanisms of weight loss and diabetes resolution. J Clin Endocrinol Metab. 2004;89(6):2608–15.

    Article  CAS  PubMed  Google Scholar 

  30. Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg. 2006;244(5):741–9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rhee NA, Wahlgren CD, Pedersen J, et al. Effect of Roux-en-Y gastric bypass on the distribution and hormone expression of small-intestinal enteroendocrine cells in obese patients with type 2 diabetes. Diabetologia. 2015;58(10):2254–8.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang F, Strain GW, Lei W, et al. Changes in lipid profiles in morbidly obese patients after laparoscopic sleeve gastrectomy (LSG). Obes Surg. 2011;21(3):305–9.

    Article  PubMed  Google Scholar 

  33. Oliveira Cda S, Beserra BT, Cunha RS, et al. Impact of Roux-en-Y gastric bypass on lipid and inflammatory profiles. Rev Col Bras Cir. 2015;42(5):305–10.

    Article  PubMed  Google Scholar 

  34. Ohneda A, Ohneda M. Effect of glicentin-related peptides upon the secretion of insulin and glucagon in the canine pancreas. Tohoku J Exp Med. 1988;155(2):197–204.

    Article  CAS  PubMed  Google Scholar 

  35. Ohneda A, Kobayashi T, Nihei J. Effect of glicentin-related peptides on glucagon secretion in anaesthetized dogs. Diabetologia. 1986;29(6):397–401.

    Article  CAS  PubMed  Google Scholar 

  36. Yousseif A, Emmanuel J, Karra E, et al. Differential effects of laparoscopic sleeve gastrectomy and laparoscopic gastric bypass on appetite, circulating acyl-ghrelin, peptide YY3-36 and active GLP-1 levels in non-diabetic humans. Obes Surg. 2014;24(2):241–52.

    Article  PubMed  Google Scholar 

  37. Bataille D. Pro-protein convertases in intermediary metabolism: islet hormones, brain/gut hormones and integrated physiology. J Mol Med (Berl). 2007;85(7):673–84.

    Article  CAS  Google Scholar 

  38. Bataille D, Dalle S. The forgotten members of the glucagon family. Diabetes Res Clin Pract. 2014;106(1):1–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Teams of the Departments of Endocrinology, Bariatric, and Visceral Surgery and of the Clinical Chemistry Laboratory (University Hospital of Nice) are acknowledged for their help in collecting samples and data. M. Kacimi (Mercodia®) is acknowledged for providing glicentin ELISA kits.

Author Contributions

All authors contributed to the design, conducted, collected, analyzed, and interpreted the data. All authors contributed to the intellectual content of this article and approved the final version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia Chinetti.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Statement of Informed Consent

Informed consent was obtained from all individual participants included in the study.

Statement of Human and Animal Rights

All procedures performed in studies involving human participants were done in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Funding

This study was supported by the Université Côte d’Azur and the University Hospital of Nice.

Electronic Supplementary Material

Figure S1:

Anthropometric measures before and at 3, 6 and 12 months after bariatric surgery, expressed as means ± SEM. (a) Body mass index (kg/m2), (b) Weight loss (%), (c) Fat mass (%), (d) Abdominal circumference (cm). a: p < 0.05 vs pre-operative value. b: p < 0.05 vs 3 months value. c: p < 0.05 vs 6 months value. Pre-op: pre-operative ; 3 M: 3 months after surgery ; 6 M: 6 months after surgery ; 12 M: 12 months after surgery

Figure S2: Glycemic parameters before and at 3, 6 and 12 months after bariatric surgery, expressed as means ± SEM. (a) Glycemia (mmol/L), (b) HbA1c (%), (c) Insulinemia (mU/l), (d) C-peptide (pmol/L), (E) HOMA-IR. a: p < 0.05 vs pre-operative value. Pre-op: pre-operative ; 3 M: 3 months after surgery ; 6 M: 6 months after surgery ; 12 M: 12 months after surgery

Figure S3: Lipid parameters before and at 3, 6 and 12 months after bariatric surgery, expressed as means ± SEM. (a) Triglyceride (g/L), (b) Total cholesterol (g/L), (c) LDL-cholesterol (g/L), (d) HDL-cholesterol (g/L). a: p < 0.05 vs pre-operative value. b: p < 0.05 vs 3 months value. Pre-op: pre-operative ; 3 M: 3 months after surgery ; 6 M: 6 months after surgery ; 12 M: 12 months after surgery (DOCX 238 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raffort, J., Panaïa-Ferrari, P., Lareyre, F. et al. Fasting Circulating Glicentin Increases After Bariatric Surgery. OBES SURG 27, 1581–1588 (2017). https://doi.org/10.1007/s11695-016-2493-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-016-2493-5

Keywords

Navigation