Metabolic Surgery in the Treatment Algorithm for Type 2 Diabetes: a Joint Statement by International Diabetes Organizations

Abstract

Background

Despite growing evidence that bariatric/metabolic surgery powerfully improves type 2 diabetes (T2D), existing diabetes treatment algorithms do not include surgical options.

Aim

The 2nd Diabetes Surgery Summit (DSS-II), an international consensus conference, was convened in collaboration with leading diabetes organizations to develop global guidelines to inform clinicians and policymakers about benefits and limitations of metabolic surgery for T2D.

Methods

A multidisciplinary group of 48 international clinicians/scholars (75% nonsurgeons), including representatives of leading diabetes organizations, participated in DSS-II. After evidence appraisal (MEDLINE [1 January 2005–30 September 2015]), three rounds of Delphi-like questionnaires were used to measure consensus for 32 data-based conclusions. These drafts were presented at the combined DSS-II and 3rd World Congress on Interventional Therapies for Type 2 Diabetes (London, U.K., 28–30 September 2015), where they were open to public comment by other professionals and amended face-to-face by the Expert Committee.

Results

Given its role in metabolic regulation, the gastrointestinal tract constitutes a meaningful target to manage T2D. Numerous randomized clinical trials, albeit mostly short/midterm, demonstrate that metabolic surgery achieves excellent glycemic control and reduces cardiovascular risk factors. On the basis of such evidence, metabolic surgery should be recommended to treat T2D in patients with class III obesity (BMI ≥40 kg/m2) and in those with class II obesity (BMI 35.0–39.9 kg/m2) when hyperglycemia is inadequately controlled by lifestyle and optimal medical therapy. Surgery should also be considered for patients with T2D and BMI 30.0–34.9 kg/m2 if hyperglycemia is inadequately controlled despite optimal treatment with either oral or injectable medications. These BMI thresholds should be reduced by 2.5 kg/m2 for Asian patients.

Conclusions

Although additional studies are needed to further demonstrate long-term benefits, there is sufficient clinical and mechanistic evidence to support inclusion of metabolic surgery among antidiabetes interventions for people with T2D and obesity. To date, the DSS-II guidelines have been formally endorsed by 45 worldwide medical and scientific societies. Health care regulators should introduce appropriate reimbursement policies.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Leyton O. Diabetes and operation: a note on the effect of gastrojejunostomy upon a case of mild diabetes mellitus with a low renal threshold. Lancet. 1925;206:1162–3.

    Article  Google Scholar 

  2. 2.

    Friedman MN, Sancetta AJ, Magovern GJ. The amelioration of diabetes mellitus following subtotal gastrectomy. Surg Gynecol Obstet. 1955;100:201–4.

    CAS  PubMed  Google Scholar 

  3. 3.

    Sjöström L, Lindroos AK, Peltonen M, et al. Swedish Obese Subjects Study Scientific Group. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351:2683–93.

    Article  PubMed  Google Scholar 

  4. 4.

    Pories WJ, Swanson MS, MacDonald KG, et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg. 1995;222:339–50. discussion 350–352.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Rubino F, Schauer PR, Kaplan LM, et al. Metabolic surgery to treat type 2 diabetes: clinical outcomes and mechanisms of action. Annu Rev Med. 2010;61:393–411.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Rubino F, Marescaux J. Effect of duodenaljejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann Surg. 2004;239:1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Rubino F, Gagner M. Potential of surgery for curing type 2 diabetes mellitus. Ann Surg. 2002;236:554–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Rubino F, Kaplan LM, Schauer PR, et al. The Diabetes Surgery Summit consensus conference: recommendations for the evaluation and use of gastrointestinal surgery to treat type 2 diabetes mellitus. Ann Surg. 2010;251:399–405.

    Article  PubMed  Google Scholar 

  9. 9.

    Cummings DE, Cohen RV. Beyond BMI: the need for new guidelines governing the use of bariatric and metabolic surgery. Lancet Diabetes Endocrinol. 2014;2:175–81.

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Dixon JB, O’Brien PE, Playfair J, et al. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA. 2008;299:316–23.

    CAS  PubMed  Google Scholar 

  11. 11.

    Mingrone G, Panunzi S, De Gaetano A, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med. 2012;366:1577–85.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Schauer PR, Kashyap SR, Wolski K, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366:1567–76.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Ikramuddin S, Korner J, Lee WJ, et al. Roux-en-Y gastric bypass vs intensive medical management for the control of type 2 diabetes, hypertension, and hyperlipidemia: the Diabetes Surgery Study randomized clinical trial. JAMA. 2013;309:2240–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Courcoulas AP, Goodpaster BH, Eagleton JK, et al. Surgical vs medical treatments for type 2 diabetes mellitus: a randomized clinical trial. JAMA Surg. 2014;149:707–15.

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Halperin F, Ding SA, Simonson DC, et al. Roux-en-Y gastric bypass surgery or lifestyle with intensive medical management in patients with type 2 diabetes: feasibility and 1-year results of a randomized clinical trial. JAMA Surg. 2014;149:716–26.

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Liang Z, Wu Q, Chen B, et al. Effect of laparoscopic Roux-en-Y gastric bypass surgery on type 2 diabetes mellitus with hypertension: a randomized controlled trial. Diabetes Res Clin Pract. 2013;101:50–6.

    Article  PubMed  Google Scholar 

  17. 17.

    Wentworth JM, Playfair J, Laurie C, et al. Multidisciplinary diabetes care with and without bariatric surgery in overweight people: a randomised controlled trial. Lancet Diabetes Endocrinol. 2014;2:545–52.

    Article  PubMed  Google Scholar 

  18. 18.

    Parikh M, Chung M, Sheth S, et al. Randomized pilot trial of bariatric surgery versus intensive medical weight management on diabetes remission in type 2 diabetic patients who do NOT meet NIH criteria for surgery and the role of soluble RAGE as a novel biomarker of success. Ann Surg. 2014;260:617–22. discussion 622–624.

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Schauer PR, Bhatt DL, Kirwan JP, et al. STAMPEDE Investigators. Bariatric surgery versus intensive medical therapy for diabetesd 3-year outcomes. N Engl J Med. 2014;370:2002–13.

    Article  PubMed  Google Scholar 

  20. 20.

    Mingrone G, Panunzi S, De Gaetano A, et al. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial. Lancet. 2015;386:964–73.

    Article  PubMed  Google Scholar 

  21. 21.

    Ikramuddin S, Billington CJ, Lee WJ, et al. Roux-en-Y gastric bypass for diabetes (the Diabetes Surgery Study): 2-year outcomes of a 5-year, randomised, controlled trial. Lancet Diabetes Endocrinol. 2015;3:413–22.

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Ding SA, Simonson DC, Wewalka M, et al. Adjustable gastric band surgery or medical management in patients with type 2 diabetes: a randomized clinical trial. J Clin Endocrinol Metab. 2015;100:2546–56.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Cummings DE, Arterburn DE, Westbrook EO, et al. Gastric bypass surgery vs intensive lifestyle and medical intervention for type 2 diabetes: the CROSSROADS randomised controlled trial. Diabetologia. 2016;59:945–53.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Courcoulas AP, Belle SH, Neiberg RH, et al. Three-year outcomes of bariatric surgery vs lifestyle intervention for type 2 diabetes mellitus treatment: a randomized clinical trial. JAMA Surg. 2015;150:931–40.

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Gloy VL, Briel M, Bhatt DL, et al. Bariatric surgery versus non-surgical treatment for obesity: a systematic review and meta-analysis of randomised controlled trials. BMJ. 2013;347:f5934.

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Thaler JP, Cummings DE. Minireview: hormonal and metabolic mechanisms of diabetes remission after gastrointestinal surgery. Endocrinology. 2009;150:2518–25.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Madsbad S, Dirksen C, Holst JJ. Mechanisms of changes in glucose metabolism and bodyweight after bariatric surgery. Lancet Diabetes Endocrinol. 2014;2:152–64.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Salehi M, Woods SC, D’Alessio DA. Gastric bypass alters both glucose-dependent and glucose-independent regulation of islet hormone secretion. Obesity (Silver Spring). 2015;23:2046–52.

    CAS  Article  Google Scholar 

  29. 29.

    Tremaroli V, Karlsson F, Werling M, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22:228–38.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Dirksen C, Jørgensen NB, Bojsen-Møller KN, et al. Mechanisms of improved glycaemic control after Roux-en-Y gastric bypass. Diabetologia. 2012;55:1890–901.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Breen DM, Rasmussen BA, Kokorovic A, et al. Jejunal nutrient sensing is required for duodenal-jejunal bypass surgery to rapidly lower glucose concentrations in uncontrolled diabetes. Nat Med. 2012;18:950–5.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Ryan KK, Tremaroli V, Clemmensen C, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature. 2014;509:183–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Liou AP, Paziuk M, Luevano Jr JM, et al. Conserved shifts in the gutmicrobiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5:178ra41.

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Saeidi N, Meoli L, Nestoridi E, et al. Reprogramming of intestinal glucose metabolism and glycemic control in rats after gastric bypass. Science. 2013;341:406–10.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Drucker DJ. The role of gut hormones in glucose homeostasis. J Clin Invest. 2007;117:24–32.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Picot J, Jones J, Colquitt JL, et al. The clinical effectiveness and cost-effectiveness of bariatric (weight loss) surgery for obesity: a systematic review and economic evaluation. Health Technol Assess. 2009;13:1–190. 215–357.

    CAS  Article  Google Scholar 

  37. 37.

    Keating C, Neovius M, Sjöholm K, et al. Health-care costs over 15 years after bariatric surgery for patients with different baseline glucose status: results from the Swedish Obese Subjects study. Lancet Diabetes Endocrinol. 2015;3:855–65.

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Zimmet P, Alberti KG, Rubino F, et al. IDF’s view of bariatric surgery in type 2 diabetes. Lancet. 2011;378:108–10.

    Article  PubMed  Google Scholar 

  39. 39.

    Kasama K, Mui W, Lee WJ, et al. IFSO-APC consensus statements 2011. Obes Surg. 2012;22:677–84.

    Article  PubMed  Google Scholar 

  40. 40.

    National Institute for Health and Care Excellence. Obesity: identification, assessment and management of overweight and obesity in children, young people and adults. London, National Institute for Health and Care Excellence, 2014

  41. 41.

    National Institute for Health and Care Excellence. Algorithm for blood glucose lowering therapy in adults with type 2 diabetes. London, National Institute for Health and Care Excellence, 2015

  42. 42.

    Grady D. Surgery for diabetes may be better than standard treatment. The New York Times, 26 Mar 2012

  43. 43.

    Consensus Development Conference Panel. NIH conference. Gastrointestinal surgery for severe obesity. Ann Intern Med 1991;115:956–961

  44. 44.

    Burns PB, Rohrich RJ, Chung KC. The levels of evidence and their role in evidence-based medicine. Plast Reconstr Surg. 2011;128:305–10.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Shekelle PG, Woolf SH, Eccles M, et al. Developing clinical guidelines. West J Med. 1999;170:348–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Jensen MD, Ryan DH, Apovian CM, et al. American College of Cardiology/American Heart Association Task Force on Practice Guidelines; Obesity Society. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. J Am Coll Cardiol. 2014;63(25 Pt B):2985–3023.

    Article  PubMed  Google Scholar 

  47. 47.

    Dalkey N, Helmer O. An experimental application of the DELPHI method to the use of experts. Manag Sci. 1963;9:458–67.

    Article  Google Scholar 

  48. 48.

    Milholland AV, Wheeler SG, Heieck JJ. Medical assessment by a Delphi group opinion technic. N Engl J Med. 1973;288:1272–5.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Gabel MJ, Shipan CR. A social choice approach to expert consensus panels. J Health Econ. 2004;23:543–64.

    Article  PubMed  Google Scholar 

  50. 50.

    Kleynen M, Braun SM, Bleijlevens MH, et al. Using a Delphi technique to seek consensus regarding definitions, descriptions and classification of terms related to implicit and explicit forms of motor learning. PLoS One. 2014;9, e100227.

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Carlsson LM, Peltonen M, Ahlin S, et al. Bariatric surgery and prevention of type 2 diabetes in Swedish obese subjects. N Engl J Med. 2012;367:695–704.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Sjöström L, Peltonen M, Jacobson P, et al. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA. 2014;311:2297–304.

    Article  PubMed  Google Scholar 

  53. 53.

    Sjöholm K, Pajunen P, Jacobson P, et al. Incidence and remission of type 2 diabetes in relation to degree of obesity at baseline and 2 year weight change: the Swedish Obese Subjects (SOS) study. Diabetologia. 2015;58:1448–53.

    Article  PubMed  Google Scholar 

  54. 54.

    Sjöström L. Review of the key results from the Swedish Obese Subjects (SOS) trialda prospective controlled intervention study of bariatric surgery. J Intern Med. 2013;273:219–34.

    Article  PubMed  Google Scholar 

  55. 55.

    Cohen RV, Pinheiro JC, Schiavon CA, et al. Effects of gastric bypass surgery in patients with type 2 diabetes and only mild obesity. Diabetes Care. 2012;35:1420–8.

    Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Arterburn DE, Bogart A, Sherwood NE, et al. A multisite study of long-term remission and relapse of type 2 diabetes mellitus following gastric bypass. Obes Surg. 2013;23:93–102.

    Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Adams TD, Davidson LE, Litwin SE, et al. Health benefits of gastric bypass surgery after 6 years. JAMA. 2012;308:1122–31.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Brethauer SA, Aminian A, Romero-Talamás H, et al. Can diabetes be surgically cured? Longterm metabolic effects of bariatric surgery in obese patients with type 2 diabetes mellitus. Ann Surg. 2013;258:628–36. discussion 636–637.

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Hsu CC, Almulaifi A, Chen JC, et al. Effect of bariatric surgery vs medical treatment on type 2 diabetes in patients with body mass index lower than 35: five-year outcomes. JAMA Surg. 2015;150:1117–24.

    Article  PubMed  Google Scholar 

  60. 60.

    Yu H, Di J, Bao Y, et al. Visceral fat area as a new predictor of short-term diabetes remission after Roux-en-Y gastric bypass surgery in Chinese patients with a body mass index less than 35 kg/m2. Surg Obes Relat Dis. 2015;11:6–11.

    Article  PubMed  Google Scholar 

  61. 61.

    Sjöström L, Gummesson A, Sjöström CD, et al. Swedish Obese Subjects Study. Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish Obese Subjects Study): a prospective, controlled intervention trial. Lancet Oncol. 2009;10:653–62.

    Article  PubMed  Google Scholar 

  62. 62.

    Sjöström L, Peltonen M, Jacobson P, et al. Bariatric surgery and long-term cardiovascular events. JAMA. 2012;307:56–65.

    Article  PubMed  Google Scholar 

  63. 63.

    Sjöström L, Narbro K, Sjöström CD, et al. Swedish Obese Subjects Study. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med. 2007;357:741–52.

    Article  PubMed  Google Scholar 

  64. 64.

    Adams TD, Gress RE, Smith SC, et al. Longterm mortality after gastric bypass surgery. N Engl J Med. 2007;357:753–61.

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Arterburn DE, Olsen MK, Smith VA, et al. Association between bariatric surgery and longterm survival. JAMA. 2015;313:62–70.

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Inge TH, Courcoulas AP, Jenkins TM, et al. Teen-LABS Consortium. Weight loss and health status 3 years after bariatric surgery in adolescents. N Engl J Med. 2016;374:113–23.

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Laiteerapong N, Huang ES. The public health implications of the cost-effectiveness of bariatric surgery for diabetes. Diabetes Care. 2010;33:2126–8.

    Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Hoerger TJ, Zhang P, Segel JE, et al. Cost-effectiveness of bariatric surgery for severely obese adults with diabetes. Diabetes Care. 2010;33:1933–9.

    Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    CDC Diabetes Cost-effectiveness Group. Cost-effectiveness of intensive glycemic control, intensified hypertension control, and serum cholesterol level reduction for type 2 diabetes. JAMA. 2002;287:2542–51.

    Article  Google Scholar 

  70. 70.

    Birkmeyer JD, Finks JF, O’Reilly A, et al. Michigan Bariatric Surgery Collaborative. Surgical skill and complication rates after bariatric surgery. N Engl J Med. 2013;369:1434–42.

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Flum DR, Belle SH, King WC, et al. Longitudinal Assessment of Bariatric Surgery (LABS) Consortium. Perioperative safety in the longitudinal assessment of bariatric surgery. N Engl J Med. 2009;361:445–54.

    Article  PubMed  Google Scholar 

  72. 72.

    Courcoulas AP, Christian NJ, Belle SH, et al. Longitudinal Assessment of Bariatric Surgery (LABS) Consortium. Weight change and health outcomes at 3 years after bariatric surgery among individuals with severe obesity. JAMA. 2013;310:2416–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Arterburn DE, Courcoulas AP. Bariatric surgery for obesity and metabolic conditions in adults. BMJ. 2014;349:g3961.

    Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Young MT, Gebhart A, Phelan MJ, et al. Use and outcomes of laparoscopic sleeve gastrectomy vs laparoscopic gastric bypass: analysis of the American college of surgeons NSQIP. J Am Coll Surg. 2015;220:880–5.

    Article  PubMed  Google Scholar 

  75. 75.

    Aminian A, Brethauer SA, Kirwan JP, et al. How safe is metabolic/diabetes surgery? Diabetes Obes Metab. 2015;17:198–201.

    CAS  Article  PubMed  Google Scholar 

  76. 76.

    Birkmeyer NJ, Dimick JB, Share D, et al. Michigan Bariatric Surgery Collaborative. Hospital complication rates with bariatric surgery in Michigan. JAMA. 2010;304:435–42.

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Altieri MS, Yang J, Telem DA, et al. Lap band outcomes from 19,221 patients across centers and over a decade within the state of New York. Surg Endosc. 23 July 2015. DOI: 10.1007/s00464-015-4402-8

  78. 78.

    Hutter MM, Schirmer BD, Jones DB, et al. First report from the American College of Surgeons Bariatric Surgery Center Network: laparoscopic sleeve gastrectomy has morbidity and effectiveness positioned between the band and the bypass. Ann Surg. 2011;254:410–20. discussion 420–422.

    Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Nguyen NT, Slone JA, Nguyen XM, et al. A prospective randomized trial of laparoscopic gastric bypass versus laparoscopic adjustable gastric banding for the treatment of morbid obesity: outcomes, quality of life, and costs. Ann Surg. 2009;250:631–41.

    PubMed  Google Scholar 

  80. 80.

    Morino M, Toppino M, Forestieri P, et al. Mortality after bariatric surgery: analysis of 13,871 morbidly obese patients from a national registry. Ann Surg. 2007;246:1002–7. discussion 1007–1009.

    Article  PubMed  Google Scholar 

  81. 81.

    Risstad H, Søvik TT, Engström M, et al. Five-year outcomes after laparoscopic gastric bypass and laparoscopic duodenal switch in patients with body mass index of 50 to 60: a randomized clinical trial. JAMA Surg. 2015;150:352–61.

    Article  PubMed  Google Scholar 

  82. 82.

    Mechanick JI, Kushner RF, Sugerman HJ, et al. American Association of Clinical Endocrinologists; Obesity Society; American Society for Metabolic & Bariatric Surgery. American Association of Clinical Endocrinologists, The Obesity Society, and American Society for Metabolic & Bariatric Surgery medical guidelines for clinical practice for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient. Obesity (Silver Spring). 2009;17 Suppl 1:S1–S70.

    Google Scholar 

  83. 83.

    Mechanick JI, Youdim A, Jones DB, et al. American Association of Clinical Endocrinologists; Obesity Society; American Society for Metabolic & Bariatric Surgery. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient—2013 update: cosponsored by American Association of Clinical Endocrinologists, The Obesity Society, and American Society for Metabolic & Bariatric Surgery. Obesity (Silver Spring). 2013;21 Suppl 1:S1–S27.

    CAS  Article  Google Scholar 

  84. 84.

    Del Villar Madrigal E, Neme-Yunes Y, Clavellina-Gaytan D, et al. Anemia after Roux-en-Y gastric bypass. How feasible to eliminate the risk by proper supplementation? Obes Surg. 2015;25:80–4.

    Article  PubMed  Google Scholar 

  85. 85.

    Flancbaum L, Belsley S, Drake V, et al. Preoperative nutritional status of patients undergoing Roux-en-Y gastric bypass for morbid obesity. J Gastrointest Surg. 2006;10:1033–7.

    Article  PubMed  Google Scholar 

  86. 86.

    Lalmohamed A, de Vries F, Bazelier MT, et al. Risk of fracture after bariatric surgery in the United Kingdom: population based, retrospective cohort study. BMJ. 2012;345, e5085.

    Article  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Lu CW, Chang YK, Chang HH, et al. Fracture risk after bariatric surgery: a 12-year nationwide cohort study. Medicine (Baltimore). 2015;94, e2087.

    Article  Google Scholar 

  88. 88.

    Lee CJ, Clark JM, Schweitzer M, et al. Prevalence of and risk factors for hypoglycemic symptoms after gastric bypass and sleeve gastrectomy. Obesity (Silver Spring). 2015;23:1079–84.

    Article  Google Scholar 

  89. 89.

    Service GJ, Thompson GB, Service FJ, et al. Hyperinsulinemic hypoglycemia with nesidioblastosis after gastric-bypass surgery. N Engl J Med. 2005;353:249–54.

    CAS  Article  PubMed  Google Scholar 

  90. 90.

    Ponce J, Woodman G, Swain J, et al. REDUCE Pivotal Trial Investigators. The REDUCE pivotal trial: a prospective, randomized controlled pivotal trial of a dual intragastric balloon for the treatment of obesity. Surg Obes Relat Dis. 2015;11:874–81.

    Article  PubMed  Google Scholar 

  91. 91.

    Lebovitz HE, Ludvik B, Yaniv I, et al. Treatment of patients with obese type 2 diabetes with Tantalus-DIAMOND gastric electrical stimulation: normal triglycerides predict durable effects for at least 3 years. Horm Metab Res. 2015;47:456–62.

    CAS  Article  PubMed  Google Scholar 

  92. 92.

    Rohde U, Hedbäck N, Gluud LL, et al. Effect of the EndoBarrier Gastrointestinal Liner on obesity and type 2 diabetes: a systematic review and meta-analysis. Diabetes Obes Metab. 2016;18:300–5.

    CAS  Article  PubMed  Google Scholar 

  93. 93.

    Schouten R, Rijs CS, Bouvy ND, et al. A multicenter, randomized efficacy study of the EndoBarrier Gastrointestinal Liner for presurgical weight loss prior to bariatric surgery. Ann Surg. 2010;251:236–43.

    Article  PubMed  Google Scholar 

  94. 94.

    Iaconelli A, Panunzi S, De Gaetano A, et al. Effects of bilio-pancreatic diversion on diabetic complications: a 10-year follow-up. Diabetes Care. 2011;34:561–7.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Rubino F, Shukla A, Pomp A, et al. Bariatric, metabolic, and diabetes surgery: what’s in a name? Ann Surg. 2014;259:117–22.

    Article  PubMed  Google Scholar 

  96. 96.

    Nguyen KT, Billington CJ, Vella A, et al. Preserved insulin secretory capacity and weight loss are the predominant predictors of glycemic control in patients with type 2 diabetes randomized to Rouxen-Y gastric bypass. Diabetes. 2015;64:3104–10.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Buse JB, Caprio S, Cefalu WT, et al. How do we define cure of diabetes? Diabetes Care. 2009;32:2133–5.

    Article  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Panunzi S, De Gaetano A, Carnicelli A, et al. Predictors of remission of diabetes mellitus in severely obese individuals undergoing bariatric surgery: do BMI or procedure choice matter? A meta-analysis. Ann Surg. 2015;261:459–67.

    Article  PubMed  Google Scholar 

  99. 99.

    Panunzi S, Carlsson L, De Gaetano A, et al. Determinants of diabetes remission and glycemic control after bariatric surgery. Diabetes Care. 2016;39:166–74.

    CAS  Article  PubMed  Google Scholar 

  100. 100.

    Eliasson B, Liakopoulos V, Franzén S, et al. Cardiovascular disease and mortality in patients with type 2 diabetes after bariatric surgery in Sweden: a nationwide, matched, observational cohort study. Lancet Diabetes Endocrinol. 2015;3:847–54.

    Article  PubMed  Google Scholar 

  101. 101.

    Müller-Stich BP, Senft JD, Warschkow R, et al. Surgical versus medical treatment of type 2 diabetes mellitus in nonseverely obese patients: a systematic review and meta-analysis. Ann Surg. 2015;261:421–9.

    Article  PubMed  Google Scholar 

  102. 102.

    Lee WJ, Chong K, Ser KH, et al. Gastric bypass vs sleeve gastrectomy for type 2 diabetes mellitus: a randomized controlled trial. Arch Surg. 2011;146:143–8.

    Article  PubMed  Google Scholar 

  103. 103.

    Li JF, Lai DD, Ni B, et al. Comparison of laparoscopic Roux-en-Y gastric bypass with laparoscopic sleeve gastrectomy for morbid obesity or type 2 diabetes mellitus: a meta-analysis of randomized controlled trials. Can J Surg. 2013;56:E158–64.

    Article  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Lee WJ, Chong K, Lin YH, et al. Laparoscopic sleeve gastrectomy versus single anastomosis (mini-) gastric bypass for the treatment of type 2 diabetes mellitus: 5-year results of a randomized trial and study of incretin effect. Obes Surg. 2014;24:1552–62.

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Consortia

Corresponding authors

Correspondence to Francesco Rubino or David E. Cummings.

Ethics declarations

Funding and Duality of Interest

The DSS-II and WCITD 2015 were supported by the International Diabetes Surgery Task Force (a nonprofit organization), King’s College London, King’s College Hospital, Johnson & Johnson, Medtronic, Novo Nordisk, Fractyl, DIAMOND MetaCure, Gore, MedImmune, and NGM Biopharmaceuticals. These sponsors played no role in the selection of voting delegates, the Delphi process, the DSS-II and WCITD 2015 programs, or the writing of this article. None of the DSS-II codirectors, members of the organizing committee, or voting delegates received payment for their efforts. No other potential conflicts of interest relevant to this article were reported.

Additional information

F.R. and D.E.C. chaired the writing committee for this report.

The 2nd Diabetes Surgery Summit voting delegates are listed in Table 2.

Copyright © 2016 American Diabetes Association from: Diabetes Care 2016 Jun; 39(6): 861-877. Reprinted with permission from The American Diabetes Association

See accompanying articles, pp. 857, 878, 884, 893, 902, 912, 924, 934, 941, 949, and 954 in Diabetes Care 2016 Jun; 39(6).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rubino, F., Nathan, D.M., Eckel, R.H. et al. Metabolic Surgery in the Treatment Algorithm for Type 2 Diabetes: a Joint Statement by International Diabetes Organizations. OBES SURG 27, 2–21 (2017). https://doi.org/10.1007/s11695-016-2457-9

Download citation

Keywords