Skip to main content

Advertisement

Log in

Changes in Bone Mineral Density in Women Following 1-Year Gastric Bypass Surgery

  • Allied Care
  • Published:
Obesity Surgery Aims and scope Submit manuscript

An Erratum to this article was published on 15 July 2015

Abstract

Background

Roux-en-Y gastric bypass (RYGB) surgery is the gold standard surgical treatment for obesity. However, unintended nutritional deficiencies following this surgery are common, including changes in bone metabolism. We assessed changes in bone mineral density (BMD), nutritional compounds, and bone resorption markers before and 1 year following RYGB surgery.

Methods

Our study included 22 female patients with class II/III obesity. A clinical questionnaire, a 24-h recall, blood and urine samples, and dual-energy X-ray absorptiometry were provided.

Results

Mean age was 37.2 ± 9.6 years; 86 % were Caucasian and 77.2 % were premenopausal. Mean preoperative body mass index was 44.4 ± 5.0 and 27.5 ± 4.5 kg/m2 at 1-year follow-up (p < 0.001). 25-OH-vitamin D-levels were similar in both periods [11.7 (9.7–18.0) vs. 15.7 (10.2–2.7) pg/dL, p = 0.327]. Serum N-telopeptide (16.3 ± 3.4 vs. 38.2 ± 7.0 nM BCE, p < 0.001) and parathyroid hormone (45.4 ± 16.7 vs. 62.7 ± 28.9 pg/mL, p = 0.026) increased after RYGB surgery, reflecting bone resorption. BMD decreased after RYGB surgery in the lumbar spine (1.13 ± 0.11 vs. 1.04 ± 0.09 g/cm2, p = 0.001), femoral neck (1.03 ± 0.15 vs. 0.94 ± 0.16 g/cm2, p = 0.001), and total femur (1.07 ± 0.11 vs. 0.97 ± 0.15 g/cm2, p = 0.003).

Conclusions

Decreased BMD in the lumbar spine, femoral neck, and total femur is detectable in women 1 year after RYGB surgery. Calcium malabsorption, caused by vitamin D deficiency and increased bone resorption, is partially responsible for these outcomes and should be targeted in future clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Rokholm B, Baker JL, Sorensen TI. The levelling off of the obesity epidemic since the year 1999—a review of evidence and perspectives. Obes Rev. 2010;11(12):835–46.

    Article  PubMed  CAS  Google Scholar 

  2. Flegal KM, et al. Prevalence and trends in obesity among US adults, 1999–2008. JAMA. 2010;303(3):235–41.

    Article  PubMed  CAS  Google Scholar 

  3. Moura EC , Claro RM. Estimates of obesity trends in Brazil, 2006–2009. Int J Public Health. 2011.

  4. Colquitt JL, et al. Surgery for obesity. Cochrane Database Syst Rev. 2009(2): p. CD003641.

  5. Barrow CJ. Roux-en-Y gastric bypass for morbid obesity. AORN J. 2002;76(4):590. 593–604; quiz 606–8.

    Article  PubMed  Google Scholar 

  6. Garcia OP, Long KZ, Rosado JL. Impact of micronutrient deficiencies on obesity. Nutr Rev. 2009;67(10):559–72.

    Article  PubMed  Google Scholar 

  7. Campos GM, et al. Better weight loss, resolution of diabetes, and quality of life for laparoscopic gastric bypass vs banding: results of a 2-cohort pair-matched study. Arch Surg. 2011;146(2):149–55.

    Article  PubMed  Google Scholar 

  8. Fleischer J, et al. The decline in hip bone density after gastric bypass surgery is associated with extent of weight loss. J Clin Endocrinol Metab. 2008;93(10):3735–40.

    Article  PubMed  CAS  Google Scholar 

  9. Sinha N, et al. Increased PTH and 1.25(OH)(2)D levels associated with increased markers of bone turnover following bariatric surgery. Obesity (Silver Spring). 2011;19:2388–93.

    Article  CAS  Google Scholar 

  10. Higa K, et al. Laparoscopic Roux-en-Y gastric bypass: 10-year follow-up. Surg Obes Relat Dis. 2010;7:516–25.

    Article  PubMed  Google Scholar 

  11. Gehrer S, et al. Fewer nutrient deficiencies after laparoscopic sleeve gastrectomy (LSG) than after laparoscopic Roux-Y-gastric bypass (LRYGB)—a prospective study. Obes Surg. 2010;20(4):447–53.

    Article  PubMed  Google Scholar 

  12. Riedt CS, et al. Overweight postmenopausal women lose bone with moderate weight reduction and 1 g/day calcium intake. J Bone Miner Res. 2005;20(3):455–63.

    Article  PubMed  CAS  Google Scholar 

  13. Mezquita-Raya P, et al. Relation between vitamin D insufficiency, bone density, and bone metabolism in healthy postmenopausal women. J Bone Miner Res. 2001;16(8):1408–15.

    Article  PubMed  CAS  Google Scholar 

  14. Ricci TA, et al. Moderate energy restriction increases bone resorption in obese postmenopausal women. Am J Clin Nutr. 2001;73(2):347–52.

    PubMed  CAS  Google Scholar 

  15. Villareal DT, et al. Effect of weight loss and exercise therapy on bone metabolism and mass in obese older adults: a one-year randomized controlled trial. J Clin Endocrinol Metab. 2008;93(6):2181–7.

    Article  PubMed  CAS  Google Scholar 

  16. Mahdy T, et al. Effect of Roux-en Y gastric bypass on bone metabolism in patients with morbid obesity: Mansoura experiences. Obes Surg. 2008;18(12):1526–31.

    Article  PubMed  Google Scholar 

  17. Vilarrasa N, et al. Evaluation of bone mineral density loss in morbidly obese women after gastric bypass: 3-year follow-up. Obes Surg. 2011;21(4):465–72.

    Article  PubMed  Google Scholar 

  18. Valderas JP, et al. Increase of bone resorption and the parathyroid hormone in postmenopausal women in the long-term after Roux-en-Y gastric bypass. Obes Surg. 2009;19(8):1132–8.

    Article  PubMed  Google Scholar 

  19. Gastrointestinal surgery for severe obesity: National Institutes of Health Consensus Development Conference Statement. Am J Clin Nutr. 1992. 55(2 Suppl): p. 615S–619S.

    Google Scholar 

  20. Deitel M, Greenstein RJ. Recommendations for reporting weight loss. Obes Surg. 2003;13(2):159–60.

    Article  PubMed  Google Scholar 

  21. Baim S, et al. Official positions of the International Society for Clinical Densitometry and executive summary of the 2007 ISCD Position Development Conference. J Clin Densitom. 2008;11(1):75–91.

    Article  PubMed  Google Scholar 

  22. Matthews DR, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.

    Article  PubMed  CAS  Google Scholar 

  23. Vilarrasa N, et al. Evaluation of bone disease in morbidly obese women after gastric bypass and risk factors implicated in bone loss. Obes Surg. 2009;19(7):860–6.

    Article  PubMed  Google Scholar 

  24. Tothill P. Dual-energy X-ray absorptiometry measurements of total-body bone mineral during weight change. J Clin Densitom. 2005;8(1):31–8.

    Article  PubMed  Google Scholar 

  25. Yoshimura, N, et al. Biochemical markers of bone turnover as predictors of osteoporosis and osteoporotic fractures in men and women: 10-year follow-up of the Taiji cohort. Mod Rheumatol. 2011.

  26. Eastell R, et al. Biological variability of serum and urinary N-telopeptides of type I collagen in postmenopausal women. J Bone Miner Res. 2000;15(3):594–8.

    Article  PubMed  CAS  Google Scholar 

  27. Singhellakis PN, et al. Vitamin D deficiency in White, apparently healthy, free-living adults in a temperate region. Hormones (Athens). 2011;10(2):131–43.

    Google Scholar 

  28. Flores L, et al. Calcium and vitamin D supplementation after gastric bypass should be individualized to improve or avoid hyperparathyroidism. Obes Surg. 2010;20(6):738–43.

    Article  PubMed  Google Scholar 

  29. Williams SE. Metabolic bone disease in the bariatric surgery patient. J Obes. 2011;2011:634614.

    PubMed  Google Scholar 

  30. Nogues X, et al. Bone mass loss after sleeve gastrectomy: a prospective comparative study with gastric bypass. Cir Esp. 2010;88(2):103–9.

    Article  PubMed  Google Scholar 

  31. Casagrande DS, et al. Bone mineral density and nutritional profile in morbidly obese women. Obes Surg. 2010;20(10):1372–9.

    Article  PubMed  Google Scholar 

  32. Gemmel K, et al. Vitamin D deficiency in preoperative bariatric surgery patients. Surg Obes Relat Dis. 2009;5(1):54–9.

    Article  PubMed  Google Scholar 

  33. Lee JH, et al. Vitamin D deficiency an important, common, and easily treatable cardiovascular risk factor? J Am Coll Cardiol. 2008;52(24):1949–56.

    Article  PubMed  CAS  Google Scholar 

  34. Saraiva GL, et al. Influence of ultraviolet radiation on the production of 25 hydroxyvitamin D in the elderly population in the city of Sao Paulo (23 degrees 34′S), Brazil. Osteoporos Int. 2005;16(12):1649–54.

    Article  PubMed  CAS  Google Scholar 

  35. Silva BC, et al. Prevalence of vitamin D deficiency and its correlation with PTH, biochemical bone turnover markers and bone mineral density, among patients from ambulatories. Arq Bras Endocrinol Metabol. 2008;52(3):482–8.

    Article  PubMed  Google Scholar 

  36. Wortsman J, et al. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72(3):690–3.

    PubMed  CAS  Google Scholar 

  37. Aills L, et al. ASMBS Allied Health nutritional guidelines for the surgical weight loss patient. Surg Obes Relat Dis. 2008;4(5 Suppl):S73–S108.

    Article  PubMed  Google Scholar 

  38. Jackson RD, et al. Calcium plus vitamin D supplementation and the risk of fractures. N Engl J Med. 2006;354(7):669–83.

    Article  PubMed  CAS  Google Scholar 

  39. Whitehead CC, Fleming RH. Osteoporosis in cage layers. Poult Sci. 2000;79(7):1033–41.

    PubMed  CAS  Google Scholar 

  40. Duran de Campos C, et al. Calcium intake and metabolic bone disease after eight years of Roux-en-Y gastric bypass. Obes Surg. 2008;18(4):386–90.

    Article  PubMed  Google Scholar 

  41. Ott MT, et al. biochemical evidence of metabolic bone disease in women following Roux-Y gastric bypass for morbid obesity. Obes Surg. 1992;2(4):341–8.

    Article  PubMed  Google Scholar 

  42. Colossi FG, et al. Need for multivitamin use in the postoperative period of gastric bypass. Obes Surg. 2008;18(2):187–91.

    Article  PubMed  Google Scholar 

  43. Karlsson J, et al. Psychosocial functioning in the obese before and after weight reduction: construct validity and responsiveness of the Obesity-Related Problems Scale. Int J Obes Relat Metab Disord. 2003;27(5):617–30.

    Article  PubMed  CAS  Google Scholar 

  44. Garb J, et al. Bariatric surgery for the treatment of morbid obesity: a meta-analysis of weight loss outcomes for laparoscopic adjustable gastric banding and laparoscopic gastric bypass. Obes Surg. 2009;19(10):1447–55.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Melissa Markoski from Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, Porto Alegre, Brazil, for the bone resorption markers' measurements. This work was supported by a grant from the Brazilian Federal Agency for Support and Evaluation of Graduate Education—Capes and PBBEP3-131567 from the Swiss National Science Foundation (MW). The authors have no other potential conflicts of interest, including specific financial interests and relationships and affiliations relevant to the subject matter or materials discussed in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz D. Schaan.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s11695-015-1793-5.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casagrande, D.S., Repetto, G., Mottin, C.C. et al. Changes in Bone Mineral Density in Women Following 1-Year Gastric Bypass Surgery. OBES SURG 22, 1287–1292 (2012). https://doi.org/10.1007/s11695-012-0687-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-012-0687-z

Keywords

Navigation