Skip to main content
Log in

Pancreatic Polypeptide Meal Response May Predict Gastric Band-Induced Weight Loss

  • Physiology Research
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

Unknown hormonal and neural satiety signals are thought to drive sustainable weight loss following laparoscopic adjustable gastric banding (LAGB). The objective of this study was to investigate whether the structurally related satiety hormones pancreatic polypeptide (PP) and peptide YY (PYY) influence total percentage weight loss after LAGB.

Methods

A cross-sectional study examined 17 postoperative individuals who had already achieved a mean of 28% LAGB-induced weight loss (range, 10–38%). A prospective study assessed plasma PP and PYY meal responses in 16 obese individuals prior to LAGB.

Results

In the cross-sectional study, individuals with higher weight loss had lower PP meal responses (2-h AUC, R = −0.60, p = 0.01) and lower fasting PYY levels (R = −0.55, p = 0.02). In the prospective study, subsequent mean weight loss was 20% (range, 5–50%) after a mean of 53 months. Low preoperative PP meal response (2-h AUC) predicted significantly higher subsequent weight loss after LAGB (R = −0.56, p = 0.024). The eight individuals with the lowest PP meal response lost more weight than the eight with the highest PP meal response (median 25% vs. 14%, p = 0.004). When compared across all three groups, mean PP meal responses did not differ. Fasting PYY levels, however, were significantly lower in the postoperative group compared to the group tested pre-operatively, or the BMI-matched controls (−30%, p = 0.03).

Conclusions

PYY appears reduced in proportion to weight loss following LAGB, possibly representing attempted orexigenic homeostatic compensation. Although PP responses appear unchanged by weight loss status, low PP meal response may predict higher weight loss. PP meal response may be a biological marker that could predict an individual's susceptibility to the mechanism underlying LAGB-induced weight loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Please note that for the comparison with BMI-matched controls, the 0900 PYY levels of the postoperative patients was the mean of the 0900 PYY levels measured on both testing occasions (‘optimal’ and ‘reduced’ restriction).

References

  1. Adrian TE, Bloom SR, Bryant MG, et al. Distribution and release of human pancreatic polypeptide. Gut. 1976;17:940–4.

    Article  PubMed  CAS  Google Scholar 

  2. Adrian TE, Ferri GL, Bacarese-Hamilton AJ, et al. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology. 1985;89:1070–7.

    PubMed  CAS  Google Scholar 

  3. Jayasena CN, Bloom SR. Role of gut hormones in obesity. Endocrinol Metab Clin North Am. 2008;37:769–87. xi.

    Article  PubMed  CAS  Google Scholar 

  4. Neary NM, McGowan BM, Monteiro MP, et al. No evidence of an additive inhibitory feeding effect following PP and PYY 3–36 administration. Int J Obes (Lond). 2008;32:1438–40.

    Article  CAS  Google Scholar 

  5. Batterham RL, Cohen MA, Ellis SM, et al. Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med. 2003;349:941–8.

    Article  PubMed  CAS  Google Scholar 

  6. le Roux CW, Batterham RL, Aylwin SJ, et al. Attenuated peptide YY release in obese subjects is associated with reduced satiety. Endocrinology. 2006;147:3–8.

    Article  PubMed  Google Scholar 

  7. Sjostrom L, Narbro K, Sjostrom CD, et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med. 2007;357:741–52.

    Article  PubMed  Google Scholar 

  8. O'Brien PE, McPhail T, Chaston TB, et al. Systematic review of medium-term weight loss after bariatric operations. Obes Surg. 2006;16:1032–40.

    Article  PubMed  Google Scholar 

  9. le Roux CW, Aylwin SJ, Batterham RL, et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg. 2006;243:108–14.

    Article  PubMed  Google Scholar 

  10. Korner J, Bessler M, Cirilo LJ, et al. Effects of Roux-en-Y gastric bypass surgery on fasting and postprandial concentrations of plasma ghrelin, peptide YY, and insulin. J Clin Endocrinol Metab. 2005;90:359–65.

    Article  PubMed  CAS  Google Scholar 

  11. Shak JR, Roper J, Perez-Perez GI, et al. The effect of laparoscopic gastric banding surgery on plasma levels of appetite-control, insulinotropic, and digestive hormones. Obes Surg. 2008;18:1089–96.

    Article  PubMed  Google Scholar 

  12. Hanusch-Enserer U, Ghatei MA, Cauza E, et al. Relation of fasting plasma peptide YY to glucose metabolism and cardiovascular risk factors after restrictive bariatric surgery. Wien Klin Wochenschr. 2007;119:291–6.

    Article  PubMed  CAS  Google Scholar 

  13. Bose M, Machineni S, Olivan B, et al. Superior appetite hormone profile after equivalent weight loss by gastric bypass compared to gastric banding. Obesity (Silver Spring). 2010;18:1085–91.

    Article  CAS  Google Scholar 

  14. Korner J, Inabnet W, Febres G, et al. Prospective study of gut hormone and metabolic changes after adjustable gastric banding and Roux-en-Y gastric bypass. Int J Obes (Lond). 2009;33:786–95.

    Article  CAS  Google Scholar 

  15. Dixon AF, Dixon JB, O'Brien PE. Laparoscopic adjustable gastric banding induces prolonged satiety: a randomized blind crossover study. J Clin Endocrinol Metab. 2005;90:813–9.

    Article  PubMed  CAS  Google Scholar 

  16. Adrian TE, Bloom SR, Bryant MG, et al. Proceedings: radioimmunoassay of a new gut hormone-human pancreatic polypeptide. Gut. 1976;17:393–4.

    Article  PubMed  CAS  Google Scholar 

  17. Faraj M, Havel PJ, Phelis S, et al. Plasma acylation-stimulating protein, adiponectin, leptin, and ghrelin before and after weight loss induced by gastric bypass surgery in morbidly obese subjects. J Clin Endocrinol Metab. 2003;88:1594–602.

    Article  PubMed  CAS  Google Scholar 

  18. Morinigo R, Vidal J, Lacy AM, et al. Circulating peptide YY, weight loss, and glucose homeostasis after gastric bypass surgery in morbidly obese subjects. Ann Surg. 2008;247:270–5.

    Article  PubMed  Google Scholar 

  19. Holdstock C, Zethelius B, Sundbom M, et al. Postprandial changes in gut regulatory peptides in gastric bypass patients. Int J Obes (Lond). 2008;32:1640–6.

    Article  CAS  Google Scholar 

  20. Adrian TE, Besterman HS, Cooke TJ, et al. Mechanism of pancreatic polypeptide release in man. Lancet. 1977;1:161–3.

    Article  PubMed  CAS  Google Scholar 

  21. Taylor IL, Feldman M. Effect of cephalic-vagal stimulation on insulin, gastric inhibitory polypeptide, and pancreatic polypeptide release in humans. J Clin Endocrinol Metab. 1982;55:1114–7.

    Article  PubMed  CAS  Google Scholar 

  22. Kral JG. Vagotomy as a treatment for morbid obesity. Surg Clin North Am. 1979;59:1131–8.

    PubMed  CAS  Google Scholar 

  23. Kronborg O. Truncal vagotomy and drainage in 500 patients with duodenal ulcer. Scand J Gastroenterol. 1971;6:501–9.

    Article  PubMed  CAS  Google Scholar 

  24. Goligher JC, Pulvertaft CN, Irvin TT, et al. Five- to eight-year results of truncal vagotomy and pyloroplasty for duodenal ulcer. Br Med J. 1972;1:7–13.

    Article  PubMed  CAS  Google Scholar 

  25. Kral JG, Gortz L, Hermansson G, et al. Gastroplasty for obesity: long-term weight loss improved by vagotomy. World J Surg. 1993;17:75–8. discussion, 9.

    Article  PubMed  CAS  Google Scholar 

  26. Angrisani L, Cutolo PP, Ciciriello MB, et al. Laparoscopic adjustable gastric banding with truncal vagotomy versus laparoscopic adjustable gastric banding alone: interim results of prospective randomized trial. Surg Obes Relat Dis. 2009;5:435–8.

    Article  PubMed  Google Scholar 

  27. Camilleri M, Toouli J, Herrera MF, et al. Intra-abdominal vagal blocking (VBLOC therapy): clinical results with a new implantable medical device. Surgery. 2008;143:723–31.

    Article  PubMed  CAS  Google Scholar 

  28. Business Wire. EnteroMedics announces preliminary results of its EMPOWER(TM) study. http://ir.enteromedics.com/releasedetail.cfm?ReleaseID=413254(2009). Accessed 31 December 2010.

  29. Koren MS, Holmes MD. Vagus nerve stimulation does not lead to significant changes in body weight in patients with epilepsy. Epilepsy Behav. 2006;8:246–9.

    Article  PubMed  Google Scholar 

  30. Burneo JG, Faught E, Knowlton R, et al. Weight loss associated with vagus nerve stimulation. Neurology. 2002;59:463–4.

    PubMed  CAS  Google Scholar 

  31. Bugajski AJ, Gil K, Ziomber A, et al. Effect of long-term vagal stimulation on food intake and body weight during diet induced obesity in rats. J Physiol Pharmacol. 2007;58 Suppl 1:5–12.

    PubMed  Google Scholar 

  32. Laskiewicz J, Krolczyk G, Zurowski G, et al. Effects of vagal neuromodulation and vagotomy on control of food intake and body weight in rats. J Physiol Pharmacol. 2003;54:603–10.

    PubMed  CAS  Google Scholar 

  33. Cigaina V, Hirschberg AL. Gastric pacing for morbid obesity: plasma levels of gastrointestinal peptides and leptin. Obes Res. 2003;11:1456–62.

    Article  PubMed  Google Scholar 

  34. Cigaina V, Hirschberg AL. Plasma ghrelin and gastric pacing in morbidly obese patients. Metabolism. 2007;56:1017–21.

    Article  PubMed  CAS  Google Scholar 

  35. Bohdjalian A, Prager G, Aviv R, et al. One-year experience with Tantalus: a new surgical approach to treat morbid obesity. Obes Surg. 2006;16:627–34.

    Article  PubMed  Google Scholar 

  36. Luo J, Al-Juburi A, Rashed H, et al. Gastric electrical stimulation is associated with improvement in pancreatic exocrine function in humans. Pancreas. 2004;29:e41–4.

    Article  PubMed  Google Scholar 

  37. Koska J, DelParigi A, de Courten B, et al. Pancreatic polypeptide is involved in the regulation of body weight in pima Indian male subjects. Diabetes. 2004;53:3091–6.

    Article  PubMed  CAS  Google Scholar 

  38. Pfluger PT, Kampe J, Castaneda TR, et al. Effect of human body weight changes on circulating levels of peptide YY and peptide YY3-36. J Clin Endocrinol Metab. 2007;92:583–8.

    Article  PubMed  CAS  Google Scholar 

  39. Alderdice JT, Dinsmore WW, Buchanan KD, et al. Gastrointestinal hormones in anorexia nervosa. J Psychiatr Res. 1985;19:207–13.

    Article  PubMed  CAS  Google Scholar 

  40. Uhe AM, Szmukler GI, Collier GR, et al. Potential regulators of feeding behavior in anorexia nervosa. Am J Clin Nutr. 1992;55:28–32.

    PubMed  CAS  Google Scholar 

  41. Kinzig KP, Coughlin JW, Redgrave GW, et al. Insulin, glucose, and pancreatic polypeptide responses to a test meal in restricting type anorexia nervosa before and after weight restoration. Am J Physiol Endocrinol Metab. 2007;292:E1441–6.

    Article  PubMed  CAS  Google Scholar 

  42. le Roux CW, Welbourn R, Werling M, et al. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann Surg. 2007;246:780–5.

    Article  PubMed  Google Scholar 

  43. Korner J, Inabnet W, Conwell IM, et al. Differential effects of gastric bypass and banding on circulating gut hormone and leptin levels. Obesity (Silver Spring). 2006;14:1553–61.

    Article  CAS  Google Scholar 

  44. Tice JA, Karliner L, Walsh J, et al. Gastric banding or bypass? A systematic review comparing the two most popular bariatric procedures. Am J Med. 2008;121:885–93.

    Article  PubMed  Google Scholar 

  45. Burton PR, Yap K, Brown WA, et al. Changes in satiety, supra- and infraband transit, and gastric emptying following laparoscopic adjustable gastric banding: a prospective follow-up study. Obes Surg. 2011;21:217–23.

    Article  PubMed  Google Scholar 

  46. de Jong JR, van Ramshorst B, Gooszen HG, et al. Weight Loss After laparoscopic adjustable gastric banding is not caused by altered gastric emptying. Obes Surg. 2009;19:287–92.

    Article  PubMed  Google Scholar 

  47. VozarovadeCourten B, Weyer C, Stefan N, et al. Parasympathetic blockade attenuates augmented pancreatic polypeptide but not insulin secretion in Pima Indians. Diabetes. 2004;53:663–71.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Belinda Drew for her assistance in performing the meal tests.

Funding and Potential Conflict of Interest Disclosures

The research was supported by Inamed Health, now owned by Allergan Inc., the manufacturer of the Lap-Band system, through an unrestricted research grant to Monash University. John Dixon is a Consultant for Allergan Inc. and receives research support funding. Andrew Dixon, Carel le Roux, Mohammed Ghatei, Stephen Bloom and Toni McGee have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John B. Dixon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dixon, A.F.R., le Roux, C.W., Ghatei, M.A. et al. Pancreatic Polypeptide Meal Response May Predict Gastric Band-Induced Weight Loss. OBES SURG 21, 1906–1913 (2011). https://doi.org/10.1007/s11695-011-0469-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-011-0469-z

Keywords

Navigation