Skip to main content
Log in

Vitamin D Receptor Polymorphisms in Secondary Hyperparathyroidism After Scopinaro's Biliopancreatic Diversion

  • Clinical Research
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

Secondary hyperparathyroidism is a frequent metabolic complication of bariatric surgery. Individual differences in calcium absorption determine chronic secondary hyperparathyroidism after biliopancreatic diversion in half of the patients who have normal levels of 25-hydroxyvitamin D. We aimed to evaluate if certain vitamin D receptor polymorphisms may be responsible for the latter. Cases and controls study including 57 patients after biliopancreatic diversion with a mean serum 25-hydroxyvitamin D above 20 ng/mL, separated into those with secondary hyperparathyroidism (n = 26, cases) and those without it (n = 31, controls).

Methods

Genotyping for restriction–length–fragment polymorphisms of the vitamin D receptor gene was carried out for FOK1, BSM1, APA1, and TAQ1, and haplotype structure was also constructed.

Results

There were no differences in the allelic or genotypes distribution of the four studied polymorphisms between patients and controls (P = 0.352 and P = 0.301 for FOK1, P = 0.733 and P = 0.924 for BSM1, P = 0.974 and P = 0.992 for APA1, and P = 0.995 and P = 0.928 for TAQ1, respectively). Haplotype analysis showed no differences between patients and controls (P = 0.495 for BAT, P = 1.000 for BAt, P = 0.508 for Bat and P = 0.924 for bAT haplotypes, respectively). Furthermore, haplotypes were not associated with serum PTH levels or with the ratio between serum PTH and 25-hydroxyvitamin D levels.

Conclusion

Chronic secondary hyperparathyroidism after biliopancreatic diversion in patients with normal levels of 25-hydroxyvitamin D is not dependent on vitamin D receptor gene polymorphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kohn GP, Galanko JA, Overby DW, et al. Recent trends in bariatric surgery case volume in the United States. Surgery. 2009;146:375–80.

    Article  PubMed  Google Scholar 

  2. Shah M, Simha V, Garg A. Review: long-term impact of bariatric surgery on body weight, comorbidities, and nutritional status. J Clin Endocrinol Metab. 2006;91:4223–31.

    Article  CAS  PubMed  Google Scholar 

  3. Fontaine KR, Redden DT, Wang C, et al. Years of life lost due to obesity. JAMA. 2003;289:187–93.

    Article  PubMed  Google Scholar 

  4. Sjostrom L, Gummesson A, Sjostrom CD, et al. Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish Obese Subjects Study): a prospective, controlled intervention trial. Lancet Oncol. 2009;10:653–62.

    Article  PubMed  Google Scholar 

  5. Sjostrom L. Bariatric surgery and reduction in morbidity and mortality: experiences from the SOS study. Int J Obes (Lond). 2008;32 Suppl 7:S93–7.

    Article  Google Scholar 

  6. Sugerman HJ, Wolfe LG, Sica DA, et al. Diabetes and hypertension in severe obesity and effects of gastric bypass-induced weight loss. Ann Surg. 2003;237:751–6. discussion 757–758.

    Article  PubMed  Google Scholar 

  7. Sjostrom L, Narbro K, Sjostrom CD, et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med. 2007;357:741–52.

    Article  PubMed  Google Scholar 

  8. Lynch RJ, Eisenberg D, Bell RL. Metabolic consequences of bariatric surgery. J Clin Gastroenterol. 2006;40:659–68.

    Article  PubMed  Google Scholar 

  9. Slater GH, Ren CJ, Siegel N, et al. Serum fat-soluble vitamin deficiency and abnormal calcium metabolism after malabsorptive bariatric surgery. J Gastrointest Surg. 2004;8:48–55. discussion 54–45.

    Article  PubMed  Google Scholar 

  10. Balsa JA, Botella-Carretero JI, Peromingo R, et al. Role of calcium malabsorption in the development of secondary hyperparathyroidism after biliopancreatic diversion. J Endocrinol Invest. 2008;31:845–50.

    CAS  PubMed  Google Scholar 

  11. Balsa JA, Botella-Carretero JI, Peromingo R, et al. Chronic increase of bone turnover markers after biliopancreatic diversion is related to secondary hyperparathyroidism and weight loss: relation with bone mineral density. Obes Surg. 2010;20:468–73.

    Google Scholar 

  12. Morrison NA, Qi JC, Tokita A, et al. Prediction of bone density from vitamin D receptor alleles. Nature. 1994;367:284–7.

    Article  CAS  PubMed  Google Scholar 

  13. Uitterlinden AG, Weel AE, Burger H, et al. Interaction between the vitamin D receptor gene and collagen type Ialpha1 gene in susceptibility for fracture. J Bone Miner Res. 2001;16:379–85.

    Article  CAS  PubMed  Google Scholar 

  14. Fang Y, van Meurs JB, d'Alesio A, et al. Promoter and 3′-untranslated-region haplotypes in the vitamin d receptor gene predispose to osteoporotic fracture: the Rotterdam study. Am J Hum Genet. 2005;77:807–23.

    Article  CAS  PubMed  Google Scholar 

  15. Krall EA, Parry P, Lichter JB, et al. Vitamin D receptor alleles and rates of bone loss: influences of years since menopause and calcium intake. J Bone Miner Res. 1995;10:978–84.

    Article  CAS  PubMed  Google Scholar 

  16. Salamone LM, Glynn NW, Black DM, et al. 1996. J Bone Miner Res. 1996;11:1557–65.

    Article  CAS  PubMed  Google Scholar 

  17. NIH conference. Gastrointestinal surgery for severe obesity. Consensus Development Conference Panel. Ann Intern Med. 1991;115:956–61.

    Google Scholar 

  18. Scopinaro N, Adami GF, Marinari GM, et al. Biliopancreatic diversion. World J Surg. 1998;22:936–46.

    Article  CAS  PubMed  Google Scholar 

  19. Macdonald HM, McGuigan FE, Stewart A, et al. Large-scale population-based study shows no evidence of association between common polymorphism of the VDR gene and BMD in British women. J Bone Miner Res. 2006;21:151–62.

    Article  CAS  PubMed  Google Scholar 

  20. Sainz J, Van Tornout JM, Loro ML, et al. Vitamin D-receptor gene polymorphisms and bone density in prepubertal American girls of Mexican descent. N Engl J Med. 1997;337:77–82.

    Article  CAS  PubMed  Google Scholar 

  21. Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data. Am J Hum Genet. 2001;68:978–89.

    Article  CAS  PubMed  Google Scholar 

  22. Stephens M, Scheet P. Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet. 2005;76:449–62.

    Article  CAS  PubMed  Google Scholar 

  23. Zambrano-Morales M, Borjas L, Fernandez E, et al. Association of the vitamin D receptor gene BBAAtt haplotype with osteoporosis in post-menopausic women. Invest Clin. 2008;49:29–38.

    PubMed  Google Scholar 

  24. Pugnale N, Giusti V, Suter M, et al. Bone metabolism and risk of secondary hyperparathyroidism 12 months after gastric banding in obese pre-menopausal women. Int J Obes Relat Metab Disord. 2003;27:110–6.

    Article  CAS  PubMed  Google Scholar 

  25. Guney E, Kisakol G, Ozgen G, et al. Effect of weight loss on bone metabolism: comparison of vertical banded gastroplasty and medical intervention. Obes Surg. 2003;13:383–8.

    Article  PubMed  Google Scholar 

  26. Coates PS, Fernstrom JD, Fernstrom MH, et al. Gastric bypass surgery for morbid obesity leads to an increase in bone turnover and a decrease in bone mass. J Clin Endocrinol Metab. 2004;89:1061–5.

    Article  CAS  PubMed  Google Scholar 

  27. Chapin BL, LeMar Jr HJ, Knodel DH, et al. Secondary hyperparathyroidism following biliopancreatic diversion. Arch Surg. 1996;131:1048–52. discussion 1053.

    CAS  PubMed  Google Scholar 

  28. Reichel H, Koeffler HP, Norman AW. The role of the vitamin D endocrine system in health and disease. N Engl J Med. 1989;320:980–91.

    Article  CAS  PubMed  Google Scholar 

  29. Lips P. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev. 2001;22:477–501.

    Article  CAS  PubMed  Google Scholar 

  30. Dawson-Hughes B, Heaney RP, Holick MF, et al. Estimates of optimal vitamin D status. Osteoporos Int. 2005;16:713–6.

    Article  CAS  PubMed  Google Scholar 

  31. Heaney RP, Dowell MS, Hale CA, et al. Calcium absorption varies within the reference range for serum 25-hydroxyvitamin D. J Am Coll Nutr. 2003;22:142–6.

    CAS  PubMed  Google Scholar 

  32. Chapuy MC, Preziosi P, Maamer M, et al. Prevalence of vitamin D insufficiency in an adult normal population. Osteoporos Int. 1997;7:439–43.

    Article  CAS  PubMed  Google Scholar 

  33. Gomez Alonso C, Naves Diaz M, Rodriguez Garcia M, et al. Review of the concept of vitamin D “sufficiency and insufficiency”. Nefrologia. 2003;23 Suppl 2:73–7.

    PubMed  Google Scholar 

  34. Ybarra J, Sanchez-Hernandez J, Gich I, et al. Unchanged hypovitaminosis D and secondary hyperparathyroidism in morbid obesity after bariatric surgery. Obes Surg. 2005;15:330–5.

    Article  PubMed  Google Scholar 

  35. Johnson JM, Maher JW, DeMaria EJ, et al. The long-term effects of gastric bypass on vitamin D metabolism. Ann Surg. 2006;243:701–4. discussion 704–705.

    Article  PubMed  Google Scholar 

  36. Sheikh MS, Ramirez A, Emmett M, et al. Role of vitamin D-dependent and vitamin D-independent mechanisms in absorption of food calcium. J Clin Invest. 1988;81:126–32.

    Article  CAS  PubMed  Google Scholar 

  37. Vigo E, Salas A, Perez-Fernandez R, et al. Analysis of the vitamin D receptor Fokl polymorphism. J Endocrinol Invest. 2004;27:158–62.

    CAS  PubMed  Google Scholar 

  38. Heaney RP, Recker RR. Estimation of true calcium absorption. Ann Intern Med. 1985;103:516–21.

    CAS  PubMed  Google Scholar 

  39. Heaney RP, Weaver CM, Fitzsimmons ML, et al. Calcium absorptive consistency. J Bone Miner Res. 1990;5:1139–42.

    Article  CAS  PubMed  Google Scholar 

  40. Kinyamu HK, Gallagher JC, Prahl JM, et al. Association between intestinal vitamin D receptor, calcium absorption, and serum 1,25 dihydroxyvitamin D in normal young and elderly women. J Bone Miner Res. 1997;12:922–8.

    Article  CAS  PubMed  Google Scholar 

  41. Walters JR. The role of the intestine in bone homeostasis. Eur J Gastroenterol Hepatol. 2003;15:845–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundación para la Investigación Biomédica del Hospital Universitario Ramón y Cajal (FIBio-HRC 119/08). The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose I. Botella-Carretero.

Additional information

Grants

This work was supported by the Fundación para la Investigación Biomédica del Hospital Universitario Ramón y Cajal (FIBio-HRC 119/08).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balsa, J.A., Iglesias, B., Peromingo, R. et al. Vitamin D Receptor Polymorphisms in Secondary Hyperparathyroidism After Scopinaro's Biliopancreatic Diversion. OBES SURG 20, 1415–1421 (2010). https://doi.org/10.1007/s11695-010-0144-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-010-0144-9

Keywords

Navigation