Skip to main content
Log in

Techno-functional properties and in vitro digestibility of ora-pro-nóbis flour and protein concentrate for assessing food application potential

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

With the increasing world population and vegan diet, there has been increasing consumer demand for alternative protein sources. A substitute for animal proteins is the plant protein, for instance, leaves. The Pereskia aculeata, known as ora-pro-nóbis, is undoubtedly a leafy vegetable with great potential due to its relatively high protein content (17 to 28%). This study aimed to produce ora-pro-nóbis protein concentrate (OPNPC) from ora-pro-nóbis leaves flour (OPNF) by isoelectric precipitation at three different pH’s (3.5, 4.0, and 4.5). The protein extraction by precipitation in different pHs produced OPNPC with protein content and extraction yield ranging from 52 to 55% and 1–4%, respectively. Given the highest yield, the concentrate obtained at pH 3.5 (OPNPC3.5) was selected for further investigation and comparison to OPNF. The differences in color, techno-functional properties, in vitro protein digestibility (IVPD), and structural properties were evaluated. Most techno-functional properties were statistically higher in OPNPC3.5 than in OPNF. These included its water solubility, oil holding capacity, foam capacity and stability, and emulsifying activity and stability. OPNPC3.5 had a higher IVPD (80%) than flour (77%). Scanning electron microscopy and Fourier transform infrared spectroscopy confirmed distinct compositions of materials, which can explain the difference in techno-functional properties. The findings indicate controlling protein extraction conditions as a useful technique to maximize the yield of protein concentrate obtained from ora-pro-nóbis, which was more nutritious and had better techno-functional properties than flour. This demonstrates its potential as an alternative plant-based protein to design healthy and sustainable food products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The authors declare that the data supporting the findings of this study are available within the paper. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request.

References

  1. J. Zhang, L. Liu, H. Liu, A. Yoon, S.S.H. Rizvi, Q. Wang, Crit. Rev. Food Sci. Nutr. 59, 3267 (2019)

    Article  CAS  PubMed  Google Scholar 

  2. A. Akyüz, S. Ersus, Food Chem. 335, 127673 (2021)

    Article  PubMed  Google Scholar 

  3. A.A. Anoop, P.K.S. Pillai, M. Nickerson, K.V. Ragavan, Compr. Rev. Food Sci. Food Saf. 473 (2022)

  4. M. Ducrocq, M.H. Morel, M. Anton, V. Micard, S. Guyot, V. Beaumal, V. Solé-Jamault, A. Boire, Food Chem. 381, 132254 (2022)

    Article  CAS  PubMed  Google Scholar 

  5. A.G.A. Sá, Y.M.F. Moreno, B.A.M. Carciofi, Trends Food Sci. Technol. 97, 170 (2020)

    Article  Google Scholar 

  6. M.Z. Mulla, P. Subramanian, B.N. Dar, Lwt. 158, 113106 (2022)

    Article  CAS  Google Scholar 

  7. J.A.A. Garcia, R.C.G. Corrêa, L. Barros, C. Pereira, R.M.V. Abreu, M.J. Alves, R.C. Calhelha, A. Bracht, R.M. Peralta, and I. C. F. R. Ferreira, Food Chem. 294, 302 (2019)

  8. V.B.V. Maciel, C.M.P. Yoshida, F.M. Goycoolea, Curr. Med. Chem. 26, 4573 (2018)

    Article  Google Scholar 

  9. M.B. Egea, G. Pierce, Ref. Ser. Phytochem 225 (2021)

  10. N.R. Madeira, N. Botrel, G.B. Amaro, R.A. de e Mello, C.C. Telles, A.M.R. Junqueira, and D. B. da Silva, in Espécies Nativ. Da Flora Bras. Valor Econômico Atual Ou Potencial Plantas Para o Futur. Região Nord, edited by C. ORADIN, L.; CAMILLO, J.; PAREYN, F. Germain (Ministério do Meio Ambiente, Brasília, DF, 2018), pp. 225–236

  11. N.F.N. Silva, S.H. Silva, D. Baron, I.C. Oliveira, Neves, F. Casanova, Foods 12, 1 (2023)

  12. D.N. López, M. Galante, M. Robson, V. Boeris, D. Spelzini, Int. J. Biol. Macromol. 109, 152 (2018)

    Article  PubMed  Google Scholar 

  13. L. Day, Trends Food Sci. Technol. 32, 25 (2013)

    Article  CAS  Google Scholar 

  14. F.A. Lima Junior, M.C. Conceição, J. Vilela de Resende, L.A. Junqueira, C.G. Pereira, and M. E. Torres Prado, Food Hydrocoll. 33, 38 (2013)

  15. N. Botrel, R.L. de Godoy, N.R. Madeira, G.B. Amaro, and R. A. Castro E Melo, Estudo Comparativo Da Composição Proteica E Do Perfil de Aminoácidos Em Cinco Clones de Ora-pro-Nóbis (Embrapa Hortaliças, Brasília, DF, 2019)

    Google Scholar 

  16. S.H.M. Gorissen, J.J.R. Crombag, J.M.G. Senden, W.A.H. Waterval, J. Bierau, L.B. Verdijk, L.J.C. van Loon, Amino Acids. 50, 1685 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. L. Zheng, Z. Wang, Y. Kong, Z. Ma, C. Wu, J.M. Regenstein, F. Teng, Y. Li, Food Hydrocoll. 110, 106115 (2021)

    Article  CAS  Google Scholar 

  18. C.C. Lise, C. Marques, M.A.A. da Cunha, M.L. Mitterer-Daltoé, Eur. Food Res. Technol. 247, 851 (2021)

    Article  CAS  Google Scholar 

  19. A.M.T. Lago, I.C.O. Neves, N.L. Oliveira, D.A. Botrel, L.A. Minim, J.V. de Resende, Ultrason. Sonochem. 50, 339 (2019)

    Article  CAS  PubMed  Google Scholar 

  20. K.C.G. Silva, T.N. Amaral, L.A. Junqueira, N. de Oliveira, Leite, J.V. de Resende, South. Afr. J. Chem. Eng. 23, 42 (2017)

    Article  Google Scholar 

  21. G. Kaur, S. Bhatia, J. Food Meas. Charact. 16, 3166 (2022)

    Article  Google Scholar 

  22. A.T. Tenorio, J. Gieteling, G.A.H. De Jong, R.M. Boom, A.J. Van Der Goot, G.A.H. de Jong, R.M. Boom, A.J. Van Der Goot, Food Chem. 203, 402 (2016)

    Article  Google Scholar 

  23. C. Calderón-Chiu, M. Calderón-Santoyo, E. Herman-Lara, Ragazzo-Sánchez. Food Hydrocoll. 112, 106319 (2021)

    Article  Google Scholar 

  24. K. Karaman, H. Bekiroglu, M. Kaplan, B. Çiftci, C. Yürürdurmaz, O. Sagdic, Int. J. Biol. Macromol. 200, 458 (2022)

    Article  CAS  PubMed  Google Scholar 

  25. M.M. Bradford, Anal. Biochem. 72, 248 (1976)

    Article  CAS  PubMed  Google Scholar 

  26. S.L. Rodríguez-Ambriz, A.L. Martínez-Ayala, F. Millán, G. Dávila-Ortíz, Plants Foods Hum. Nutr. 60, 99 (2005)

    Article  Google Scholar 

  27. S.O. Ogunwolu, F.O. Henshaw, H.-P. Mock, A. Santros, S.O. Awonorin, Food Chem. 115, 852 (2009)

    Article  CAS  Google Scholar 

  28. C.S. Lin, J.F. Zayas, J. Food Sci. 52, 5 (1987)

    Google Scholar 

  29. K.N. Pearce, J.E. Kinsella, J. Agric. Food Chem. 26, 716 (1978)

    Article  CAS  Google Scholar 

  30. F.T. Saricaoglu, Int. J. Biol. Macromol. 144, 760 (2020)

    Article  CAS  PubMed  Google Scholar 

  31. K. Shevkani, N. Singh, A. Kaur, J.C. Rana, Food Hydrocoll. 43, 679 (2015)

    Article  CAS  Google Scholar 

  32. E.S. Tan, N. Ying-Yuan, C.Y. Gan, Food Chem. 152, 447 (2014)

    Article  CAS  PubMed  Google Scholar 

  33. T. Tinus, M. Damour, V. Van Riel, P.A. Sopade, J. Food Eng. 113, 254 (2012)

    Article  CAS  Google Scholar 

  34. V.B.V. Maciel, R.Q. Bezerra, E.G.L. das Chagas, C.M.P. Yoshida, R.A. de Carvalho, Brazilian J. Food Technol. 25, 1 (2021)

    Google Scholar 

  35. A.T. Tenorio, K.E. Kyriakopoulou, E. Suarez-Garcia, C. van den Berg, A.J. van der Goot, Trends Food Sci. Technol. 71, 235 (2018)

    Article  Google Scholar 

  36. L.H. Khan, V.K. Varshney, J. Diet. Suppl. 15, 386 (2018)

    Article  CAS  PubMed  Google Scholar 

  37. M.D. Bocarando-Guzmán, S. Luna-Suárez, A.S. Hernández-Cázares, J.A. Herrera-Corredor, J.V. Hidalgo-Contreras, M.A. Ríos-Corripio, Int. J. Food Prop. 25, 733 (2022)

    Article  Google Scholar 

  38. C. Balfany, J. Gutierrez, M. Moncada, S. Komarnytsky, Nutrients. 15, 1327 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. M. Pojić, A. Mišan, B. Tiwari, Trends Food Sci. Technol. 75, 93 (2018)

    Article  Google Scholar 

  40. L. Amagliani, J. O’Regan, A.L. Kelly, J.A. O’Mahony, Trends Food Sci. Technol. 64, 1 (2017)

    Article  CAS  Google Scholar 

  41. L. Shen, X. Wang, Z. Wang, Y. Wu, J. Chen, Food Chem. 107, 929 (2008)

    Article  CAS  Google Scholar 

  42. C.L. Luchese, V.F. Abdalla, J.C. Spada, C. Tessaro, Food Hydrocoll. 82, 209 (2018)

    Article  CAS  Google Scholar 

  43. M. Melgosa, M.M. Pérez, A. Yebra, R. Huertas, E. Hita, Opt. Pura Apl. 34, 1 (2001)

    Google Scholar 

  44. R. Gundogan, A.C. Karaca, Lwt. 130, 109609 (2020)

    Article  CAS  Google Scholar 

  45. I.C.O. Neves, A.A. Rodrigues, T.T. Valentim, A.C.F. de Meira, S.H. Silva, L.A.A. Veríssimo, J.V. de Resende, J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1161, (2020)

  46. F.M. Pelissari, M.M. Andrade-Mahecha, P.J.D.A. Sobral, F.C. Menegalli, Starch/Staerke. 64, 382 (2012)

    Article  CAS  Google Scholar 

  47. S.-Y. Luo, Z. Huang, X. Chen, M.-H. Zong, W.-Y. Lou, Nat. Prod. Res. 25, 1 (2021)

    Google Scholar 

  48. L. Zhao, X. Cheng, X. Song, D. Ouyang, J. Wang, Q. Wu, J. Jia, Process. Biochem. 165187 (2023)

  49. K. Wang, D.W. Sun, H. Pu, Q. Wei, Trends Food Sci. Technol. 67, 207 (2017)

    Article  CAS  Google Scholar 

  50. F. Zhao, D. Zhang, X. Li, H. Dong, Molecules. 23, 1775 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  51. J. Chen, T. Mu, M. Zhang, D. Goffin, Int. J. Food Sci. Technol. 54, 752 (2019)

    Article  CAS  Google Scholar 

  52. A.K. Biswal, C. Lenka, P.K. Panda, J.M. Yang, P.K. Misra, Lwt. 137, 110459 (2021)

    Article  CAS  Google Scholar 

  53. L. de Gouvêa, R. Caldeira, T. de Azevedo, M.C. Galdeano, I. Felberg, J.R. Lima, C.G. Mellinger, Food Hydrocoll. 137, 108351 (2023)

    Article  Google Scholar 

  54. H. Zhao, C. Shen, Z. Wu, Z. Zhang, C. Xu, J. Food Biochem. 44, e13157 (2020)

    PubMed  Google Scholar 

  55. K.K. Ma, M. Greis, J. Lu, A.A. Nolden, D.J. McClements, A.J. Kinchla, Foods. 11, 1 (2022)

    Google Scholar 

  56. Z. Avelar, A.A. Vicente, J.A. Saraiva, R.M. Rodrigues, Trends Food Sci. Technol. 113, 219 (2021)

    Article  CAS  Google Scholar 

  57. C. Sun, W. Wu, Y. Ma, T. Min, F. Lai, H. Wu, Int. J. Food Prop. 20, S3311 (2018)

    Article  Google Scholar 

  58. J. Ge, C.X. Sun, A. Mata, H. Corke, R.Y. Gan, Y. Fang, Food Hydrocoll. 112, 106288 (2021)

    Article  CAS  Google Scholar 

  59. A.C. Karaca, N. Low, M. Nickerson, Food Res. Int. 44, 2742 (2011)

    Article  CAS  Google Scholar 

  60. R. Mustafa, M.J.T. Reaney, in Food Wastes By-Products, edited by R. Campos-Vega, B. D. Oomah, and H. A. Vergara-Castañeda (John Wiley & Sons, 2020), pp. 93–126

  61. Y. Cattan, D. Patil, Y. Vaknin, G. Rytwo, C. Lakemond, O. Benjamin, Innov. Food Sci. Emerg. Technol. 75, 102903 (2022)

    Article  CAS  Google Scholar 

  62. A.M. Rayan, H.M. Swailam, Y.S. Hamed, Plant. Foods Hum. Nutr. 78, 117 (2023)

    Article  CAS  PubMed  Google Scholar 

  63. A.H. Martin, O. Castellani, G.A.H. de Jong, L. Bovetto, C. Schmitt, J. Sci. Food Agric. 99, 1568 (2019)

    Article  CAS  PubMed  Google Scholar 

  64. M.M. Pedrosa, A. Varela, F. Domínguez-Timón, C.A. Tovar, H.M. Moreno, A.J. Borderías, M.T. Díaz, Plant. Foods Hum. Nutr. 75, 642 (2020)

    Article  CAS  PubMed  Google Scholar 

  65. S.M.T. Gharibzahedi, B. Smith, Trends Food Sci. Technol. 107, 466 (2021)

    Article  CAS  Google Scholar 

  66. T. Benhammouche, A. Melo, Z. Martins, M.A. Faria, S.C.M. Pinho, I.M.L.P.V.O. Ferreira, F. Zaidi, Food Chem. 348, 128858 (2021)

    Article  CAS  PubMed  Google Scholar 

  67. C.Y. Takeiti, G.C. Antonio, E.M.P. Motta, F.P. Collares-Queiroz, K.J. Park, Int. J. Food Sci. Nutr. 60, 148 (2009)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors acknowledge the financial support of Coordination for the Improvement of Higher Education Personnel (CAPES)-Finance Code 001, CAPES-PRINT (88887.694979/2022-00) and São Paulo Research Foundation (FAPESP) (2019/05578-7).

Author information

Authors and Affiliations

Authors

Contributions

Fabiana Helen Santos: Conceptualization and design of study, analysis, data acquisition and interpretation, investigation, writing-original draft. Ludmilla de Carvalho Oliveira: Conceptualization of study, supervision, data interpretation, writing review, and editing. Serafim Bakalis: Supervision, writing review, and editing. Marcelo Cristianini: Conceptualization and design, supervision, writing review, and editing.

Corresponding author

Correspondence to Fabiana Helen Santos.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Compliance with ethics requirements

This study does not contain any studies with human participation or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, F.H., de Carvalho Oliveira, L., Bakalis, S. et al. Techno-functional properties and in vitro digestibility of ora-pro-nóbis flour and protein concentrate for assessing food application potential. Food Measure 18, 6793–6802 (2024). https://doi.org/10.1007/s11694-024-02692-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-024-02692-7

Keywords

Navigation