Skip to main content
Log in

Production of functional raw chicken meat by incorporation of date palm seed extract: an assessment of microbiological, chemical and sensory properties

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This study explored the impact of date palm seeds ethanolic extract (DSEE) on the microbiological, physicochemical, and sensory qualities of chicken breast meat kept refrigerated at 4 °C. DSEE was applied at 0.156% (DSEE1), 0.312% (DSEE2), and 0.624% (DSEE4). Microbiological parameters, chemical stability, and sensory features of DSEE were monitored for 14 days at refrigerated conditions (4 °C). DSEE considerably (p < 0.05) decreased lipid/protein oxidation processes. Interestingly, at 14 days, DSEE at 0.624% delayed microbial growth. Moreover, the addition of 0.312% (DSEE2) and 0.624% (DSEE4) and storage time substantially affected the sensory (appearance, odor, color, and overall acceptability) parameters of chicken breast meat. By expertly employing chemometric techniques such as principal component analysis (PCA) and heat maps, the acquired evidence brought useful information to regroup all samples and to associate microbiological and oxidation characteristics to organoleptic attributes using correlation models. PCA and heat maps provided effective information to differentiate all samples and relate lipid and protein oxidative processes and microbiological properties to sensory parameters. The obtained findings contribute to a better knowledge of the impact of chemical and microbial alterations on sensory quality in fortified meat products. This study displayed the potential functional and economic benefits of using DSEE as an encouraging component in chicken meat preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data and materials used and/or analyzed during the present study are available. The authors will provide additional details if required.

References

  1. C.P.A. Skarp, M.-L. Hänninen, H.I.K. Rautelin, Campylobacteriosis: the role of poultry meat. Clin. Microbiol. Infect. 22, 103–109 (2016). https://doi.org/10.1016/j.cmi.2015.11.019

    Article  CAS  PubMed  Google Scholar 

  2. P. Magdelaine, M.P. Spiess, E. Valceschini, Poultry meat consumption trends in Europe. Poult. Sci. 64, 53–64 (2008). https://doi.org/10.1017/S0043933907001717

    Article  Google Scholar 

  3. A. Horrillo, C. Díaz-Caro, E. Crespo-Cebada, D. Tejerina, F.J. Mesías, A. Rodríguez-Ledesma, S. García-Torres, Perceptions of spanish consumers towards novel lamb burgers enriched with natural antioxidants and healthy fatty acids. Ital. J. Food Sci. 34(4), 11–24 (2022). https://doi.org/10.15586/ijfs.v34i4.2246

    Article  CAS  Google Scholar 

  4. M. Bashiry, H. Hosseini, A. Mohammadi, E. Sadeghi, N. Karimian-Khosroshahi, F.J. Barba, A.M. Khaneghah, Industrial and culinary practice effects on biologically active polyamines level in Turkey meat. Qual. Assur. Saf. Crops Foods 13(2), 67–78 (2021). https://doi.org/10.15586/qas.v13i2.775

    Article  CAS  Google Scholar 

  5. N. Hussain, C.H. Weng, N. Munawar, Effects of different concentrations of pineapple core extract and maceration process on free-range chicken meat quality. Ital. J. Food Sci. 34(1), 124–131 (2022). https://doi.org/10.15586/ijfs.v34i1.2086

    Article  CAS  Google Scholar 

  6. A. Al-Hinai, H. Jayasuriya, P.B. Pathare, I. Al Abri, Prospects and challenges of date fruit value-addition in Oman. Qual. Assur. Saf. Crops Foods. 14(SP1), 25–32 (2022). https://doi.org/10.15586/qas.v14iSP1.1110

    Article  Google Scholar 

  7. W. Woraprayote, Y. Malila, S. Sorapukdee, A. Swetwiwathana, S. Benjakul, W. Visessanguan, Bacteriocins from lactic acid bacteria and their applications in meat and meat products. Meat Sci. 120, 118–132 (2016). https://doi.org/10.1016/j.meatsci.2016.04.004

    Article  CAS  PubMed  Google Scholar 

  8. J.M. Lorenzo, M.A. Trindade, D.U. Ahn, F.J. Barba, Natural antioxidants to reduce the oxidation process of meat and meat products. Food Res. Int. 115, 377–378 (2019). https://doi.org/10.1016/j.foodres.2018.11.015

    Article  PubMed  Google Scholar 

  9. P.E.S. Munekata, G. Rocchetti, M. Pateiro, L. Lucini, R. Domínguez, J.M. Lorenzo, Addition of plant extracts to meat and meat products to extend shelf-life and health-promoting attributes: an overview. Curr. Opin. Food Sci. 31, 81–87 (2020). https://doi.org/10.1016/j.cofs.2020.03.003

    Article  Google Scholar 

  10. Z. Chekroud, L. Djerrab, A. Rouabhia, M.A. Dems, I. Atailia, F. Djazy, M.A. Smadi, Valorisation of date fruits by-products for the production of biopolymer polyhydroxybutyrate (PHB) using the bacterial strain Bacillus paramycoides. Ital. J. Food Sci. 34(3), 48–58 (2022). https://doi.org/10.15586/ijfs.v34i3.2236

    Article  CAS  Google Scholar 

  11. K. Radha Krishnan, S. Babuskin, P. Azhagu Saravana Babu, M. Sasikala, K. Sabina, G. Archana, M. Sivarajan, M. Sukumar, Antimicrobial and antioxidant effects of spice extracts on the shelf life extension of raw chicken meat. Int. J. Food Microbiol. 171, 32–40 (2014). https://doi.org/10.1016/j.ijfoodmicro.2013.11.011

    Article  CAS  PubMed  Google Scholar 

  12. H.S. Lee, Y.I. Park, S.H. Kang, Effects of fat meat and storage temperature on the qualities of frozen minced beef products. Qual. Assur. Saf. Crop Foods 13, 93–104 (2021). https://doi.org/10.15586/qas.v13i1.817

    Article  CAS  Google Scholar 

  13. E.E. Babiker, F.Y. Al-Juhaimi, H.A. Alqah, A.R. Adisa, O.Q. Adiamo, I.A. Mohamed Ahmed, O.N. Alsawmahi, K. Ghafoor, M.M. Ozcan, The effect of Acacia nilotica seed extract on the physicochemical, microbiological, and oxidative stability of chicken patties. J. Food Sci. Technol. 56, 3910–3920 (2019). https://doi.org/10.1007/s13197-019-03862-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. M.A. Al-Farsi, C.Y. Lee, Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem. 108, 977–985 (2008). https://doi.org/10.1016/j.foodchem.2007.12.009

    Article  CAS  PubMed  Google Scholar 

  15. S.R. Alyileili, A.S. Hussein, W. Ibrahim, K.A. El-Tarabily, Phytochemical composition and antioxidant activity of Trichoderma reesei degraded date (Phoenix dactylifera L.) pits. Curr. Bioact. Compd. 16, 528–536 (2020). https://doi.org/10.2174/1573407215666190207093046

    Article  CAS  Google Scholar 

  16. R. Essa, E.M. Elsebaie, Effect of using date pits powder as a fat replacer and anti-oxidative agent on beef burger quality. J. Food Dairy. Sci. 9, 91–96 (2018). https://doi.org/10.21608/jfds.2018.35225

    Article  Google Scholar 

  17. E. Sayas-Barberá, A.M. Martín-Sánchez, S. Cherif, J. Ben-Abda, J.Ã. Pérez-Álvarez, Effect of date (Phoenix dactylifera L.) pits on the shelf life of beef burgers. Foods 9, 102 (2020). https://doi.org/10.3390/foods9010102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. S. Smaoui, H. Ben Hlima, M. Fourati, K. Elhadef, K. Ennouri, L. Mellouli, Multiobjective optimization of Phoenix dactylifera L. seeds extraction: mixture design methodology for phytochemical contents and antibacterial activity. J. Food Process. Preserv. 44, e14822 (2020). https://doi.org/10.1111/jfpp.14822

    Article  CAS  Google Scholar 

  19. Y. Liu, S. Wei, M. Wu, S. Yang, Phenolic compounds from date pits: ultrasonic-assisted extraction, antioxidant activity and component identification. J. Food Meas. Charact. 12, 967–973 (2018). https://doi.org/10.1007/s11694-017-9711-2

    Article  Google Scholar 

  20. S. Suresh, N. Guizani, M. Al-Ruzeiki, A. Al-Hadhrami, H. Al-Dohani, I. Al-Kindi, M.S. Rahman, Thermal characteristics, chemical composition and polyphenol contents of date-pits powder. J. Food Eng. 119, 668–679 (2013). https://doi.org/10.1016/j.jfoodeng.2013.06.026

    Article  CAS  Google Scholar 

  21. C. Quettier-Deleu, B. Gressier, J. Vasseur, T. Dine, C. Brunet, M. Luyckx, M. Cazin, J.-C. Cazin, F. Bailleul, F. Trotin, Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J. Ethnopharmacol. 72, 35–42 (2000). https://doi.org/10.1016/S0378-8741(00)00196-3

    Article  CAS  PubMed  Google Scholar 

  22. M.M. Giusti, R.E. Wrolstad, Characterization and measurement of anthocyanins by UV–visible spectroscopy. Curr. Protocol. Food Anal. Chem. (2001). https://doi.org/10.1002/0471142913.faf0102s00

    Article  Google Scholar 

  23. M.K. Zainol, I. Mohd Subri, Z.A. Izzwan, Z. Mohd Zin, F. Ahmad, H. Mamat, Antioxidative properties and proximate analysis of Spent Coffee Ground (SCG) extracted using ultrasonic-methanol assisted technique as a potential functional food ingredient. Food Res. 4, 636–644 (2020). https://doi.org/10.26656/fr.2017.4(3).358

    Article  Google Scholar 

  24. S. Smaoui, A.B. Hsouna, A. Lahmar, K. Ennouri, A. Mtibaa-Chakchouk, I. Sellem, S. Najah, M. Bouaziz, L. Mellouli, Bio-preservative effect of the essential oil of the endemic Mentha piperita used alone and in combination with BacTN635 in stored minced beef meat. Meat Sci. 117, 196–204 (2016). https://doi.org/10.1016/j.meatsci.2016.03.006

    Article  CAS  PubMed  Google Scholar 

  25. M. Fourati, S. Smaoui, H.B. Hlima, K. Elhadef, O.B. Braïek, K. Ennouri, A. Chakchouk-Mtibaa, L. Mellouli, Bioactive compounds and pharmacological potential of pomegranate (Punica granatum) seeds—a review. Plant. Foods Hum. Nutr. 75, 477–486 (2020). https://doi.org/10.1007/s11130-020-00863-7

    Article  PubMed  Google Scholar 

  26. International Organization for Standardization Microbiology of the Food Chain—horizontal method for the enumeration of microorganisms. Part 1: Colony Count at 30 °C by the pour plate technique. ISO 4833-1:2013. 2013

  27. International Organization for Standardization, I. Microbiology of food and animal feeding stuffs—horizontal method for the enumeration of psychrotrophic microorganisms. International Organization for Standardization, Geneva, Switzerland, ISO. 17410. 2001

  28. International Organization for Standardization microbiology of food and animal feeding stuffs—horizontal methods for the detection and enumeration of Enterobacteriaceae. ISO 21528-2. 20 2004

  29. K. Elhadef, S. Smaoui, H. Ben Hlima, K. Ennouri, M. Fourati, A. Chakchouk Mtibaa, M. Ennouri, L. Mellouli, Effects of ephedra alata extract on the quality of minced beef meat during refrigerated storage: a chemometric approach. Meat Sci. 170, 108246 (2020). https://doi.org/10.1016/j.meatsci.2020.108246

    Article  CAS  PubMed  Google Scholar 

  30. A.C. Mtibaa, S. Smaoui, H. Ben Hlima, I. Sellem, K. Ennouri, L. Mellouli, Enterocin BacFL31 from a safety Enterococcus faecium FL31: natural preservative agent used alone and in combination with aqueous peel onion (Allium cepa) extract in ground beef meat storage. Biomed. Res. Int. (2019). https://doi.org/10.1155/2019/4094890

    Article  PubMed  PubMed Central  Google Scholar 

  31. N. Ariga, Methods for determination of carbonyl compounds by 2,4-dinitrophenylhydrazine and their application to the assay of aldehyde dehydrogenase. Anal. Biochem. 43, 446–453 (1971). https://doi.org/10.1016/0003-2697(71)90274-0

    Article  CAS  PubMed  Google Scholar 

  32. M. Metoui, A. Essid, A. Bouzoumita, A. Ferchichi, Chemical composition, antioxidant and antibacterial activity of tunisian date palm seed. Pol. J. Environ. Stud. (2018). https://doi.org/10.15244/pjoes/84918

    Article  Google Scholar 

  33. S.A. El Sohaimy, A.E. Abdelwahab, C.S. Brennan, A.M. Aboul-engine, Phenolic content, antioxidant and antimicrobial activities of Egyptian date palm (Phoenix dactylifera L.) fruits. Aust. J. Basic Appl. Sci. 9(1), 141–147 (2015)

    Google Scholar 

  34. F.A. Juhaimi, K. Ghafoor, M.M. Özcan, Physical and chemical properties, antioxidant activity, total phenol and mineral profile of seeds of seven different date fruit (Phoenix dactylifera L.) varieties. Int. J. Food Sci. Nutr. 63, 84–89 (2012). https://doi.org/10.3109/09637486.2011.598851

    Article  CAS  PubMed  Google Scholar 

  35. K.L. Alharbi, J. Raman, H.-J. Shin, Date fruit and seed in nutricosmetics. Cosmetics 8, 59 (2021). https://doi.org/10.3390/cosmetics8030059

    Article  CAS  Google Scholar 

  36. M.S. Baliga, B.R.V. Baliga, S.M. Kandathil, H.P. Bhat, P.K. Vayalil, A review of the chemistry and pharmacology of the date fruits (Phoenix dactylifera L.). Int. Food Res. J. 44, 1812–1822 (2011). https://doi.org/10.1016/j.foodres.2010.07.004

    Article  CAS  Google Scholar 

  37. E. Bouhlali, T. dine, C. Alem, J. Ennassir, M. Benlyas, A.N. Mbark, Y.F. Zegzouti, Phytochemical compositions and antioxidant capacity of three date (Phoenix dactylifera L.) seeds varieties grown in the South East Morocco. J. Saudi Soc. Agric. Sci. 16, 350–357 (2017). https://doi.org/10.1016/j.jssas.2015.11.002

    Article  Google Scholar 

  38. N. Gonzalez, D. Sevillano, L. Alou, F. Cafini, M.-J. Gimenez, M.-L. Gomez-Lus, J. Prieto, L. Aguilar, Influence of the MBC/MIC ratio on the antibacterial activity of vancomycin versus linezolid against methicillin-resistant Staphylococcus aureus isolates in a pharmacodynamic model simulating serum and soft tissue interstitial fluid concentrations reported in diabetic patients. J. Antimicrob. Chemother. 68, 2291–2295 (2013). https://doi.org/10.1093/jac/dkt185

    Article  CAS  PubMed  Google Scholar 

  39. E.A. Amira, S.E. Behija, M. Beligh, L. Lamia, I. Manel, H. Mohamed, A. Lotfi, Effects of the ripening stage on phenolic profile, phytochemical composition and antioxidant activity of date palm fruit. J. Agric. Food Chem. 60, 10896–10902 (2012). https://doi.org/10.1021/jf302602v

    Article  CAS  PubMed  Google Scholar 

  40. M. Khatami, S. Pourseyedi, Phoenix dactylifera (date palm) pit aqueous extract mediated Novel Route for synthesis high stable silver nanoparticles with high antifungal and antibacterial activity. IET Nanobiotechnol. 9, 184–190 (2015). https://doi.org/10.1049/it-not.2014.0052

    Article  PubMed  Google Scholar 

  41. K. Perveen, N.A. Bokhari, D.A. Soliman, Antibacterial activity of Phoenix dactylifera L. leaf and pit extracts against selected gram negative and gram positive pathogenic bacteria. J. Med. Plants Res. 6(2), 296–300 (2012)

    Google Scholar 

  42. M.I. Hussain, M.H. Semreen, A. Shanableh, M.N.K. Khattak, I. Saadoun, I.M. Ahmady, M. Mousa, N. Darwish, W. Radeef, S.S.M. Soliman, Phenolic composition and antimicrobial activity of different Emirati date (Phoenix dactylifera L.) pits: a comparative study. Plants 8, 497 (2019). https://doi.org/10.3390/plants8110497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. W. Kchaou, F. Abbès, R.B. Mansour, C. Blecker, H. Attia, S. Besbes, Phenolic profile, antibacterial and cytotoxic properties of second-grade date extract from tunisian cultivars (Phoenix dactylifera L.). Food Chem. 194, 1048–1055 (2016). https://doi.org/10.1016/j.foodchem.2015.08.120

    Article  CAS  PubMed  Google Scholar 

  44. M.D.C. Lima, C.P. de Sousa, C. Fernandez-Prada, J. Harel, J.D. Dubreuil, E.L. De Souza, A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria. Microb. Pathogen 130, 259–270 (2019). https://doi.org/10.1016/j.micpath.2019.03.025

    Article  CAS  Google Scholar 

  45. S. Azlin-Hasim, M.C. Cruz-Romero, M.A. Morris, E. Cummins, J.P. Kerry, Effects of a combination of antimicrobial silver low-density polyethylene nanocomposite films and modified atmosphere packaging on the shelf life of chicken breast fillets. Food Package. Shelf Life 4, 26–35 (2015). https://doi.org/10.1016/j.fpsl.2015.03.003

    Article  Google Scholar 

  46. A. La Storia, I. Ferrocino, E. Torrieri, R. Di Monaco, G. Mauriello, F. Villani, D.A. Ercolini, Combination of modified atmosphere and antimicrobial packaging to extend the shelf-life of beefsteaks stored at chill temperature. Int. J. Food Microbiol. 158, 186–194 (2012). https://doi.org/10.1016/j.ijfoodmicro.2012.07.011

    Article  CAS  PubMed  Google Scholar 

  47. M. Mahdavi-Roshan, S. Gheibi, A. Pourfarzad, Effect of propolis extract as a natural preservative on quality and shelf life of marinated chicken breast (chicken kebab). LWT 155, 112942 (2022). https://doi.org/10.1016/j.lwt.2021.112942

    Article  CAS  Google Scholar 

  48. M.M. Cowan, Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12, 564–582 (1999). https://doi.org/10.1128/CMR.12.4.564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. J. Sujiwo, D. Kim, A. Jang, Relation among quality traits of chicken breast meat during cold storage: correlations between freshness traits and torrymeter values. Poult. Sci. 97, 2887–2894 (2018). https://doi.org/10.3382/ps/pey138

    Article  CAS  PubMed  Google Scholar 

  50. M. Ezz El-Din Ibrahim, R.M. Alqurashi, F.Y. Alfaraj, Antioxidant activity of Moringa oleifera and olive Olea europaea L. Leaf powders and extracts on quality and oxidation stability of chicken burgers. Antioxidants 11, 496 (2022). https://doi.org/10.3390/antiox11030496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. N. Chinprahast, J. Boonying, N. Popuang, Antioxidant activities of mamao luang (Antidesma thwaitesianum Müll. Arg.) fruit: extraction and application in raw chicken patties. J. Food Sci. 85, 647–656 (2020). https://doi.org/10.1111/1750-3841.15035

    Article  CAS  PubMed  Google Scholar 

  52. M. Muzolf-Panek, A. Kaczmarek, J. Tomaszewska-Gras, R. Cegielska-Radziejewska, T. Szablewski, M. Majcher, K. Stuper-Szablewska, A chemometric approach to oxidative stability and physicochemical quality of raw ground chicken meat affected by black seed and other spice extracts. Antioxidants 9, 903 (2020). https://doi.org/10.3390/antiox9090903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. A. Mansouri, G. Embarek, E. Kokkalou, P. Kefalas, Phenolic profile and antioxidant activity of the algerian ripe date palm fruit (Phoenix dactylifera). Food Chem. 89(3), 411–420 (2005). https://doi.org/10.1016/j.foodchem.2004.02.051

    Article  CAS  Google Scholar 

  54. K. Khwaldia, Y. M’Rabet, A. Boulila, Active food packaging films from alginate and date palm pit extract: physicochemical properties, antioxidant capacity, and stability. Food Sci. Nutr. 11, 555–568 (2023). https://doi.org/10.1002/fsn3.3093

    Article  CAS  PubMed  Google Scholar 

  55. A. Baldisserotto, R. Barbari, C. Tupini, R. Buzzi, E. Durini, I. Lampronti, S. Vertuani, Multifunctional profiling of Moringa oleifera leaf extracts for topical application: a comparative study of different collection time. Antioxidants 12, 411 (2023). https://doi.org/10.3390/antiox12020411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. D. Borjan, M. Leitgeb, Å. Knez, M.K. Hrnčič, Microbiological and antioxidant activity of phenolic compounds in olive leaf extract. Molecules 25, 5946 (2020). https://doi.org/10.3390/molecules25245946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. N. Jonaidi Jafari, M. Kargozari, R. Ranjbar, H. Rostami, H. Hamedi, The effect of chitosan coating incorporated with ethanolic extract of propolis on the quality of refrigerated chicken fillet. J. Food Process. Preserv. 42, e13336 (2018). https://doi.org/10.1111/jfpp.13336

    Article  CAS  Google Scholar 

  58. X. Sun, X. Guo, M. Ji, J. Wu, W. Zhu, J. Wang, C. Cheng, L. Chen, Q. Zhang, Preservative effects of fish gelatin coating enriched with CUR/ΒCD emulsion on grass carp (Ctenopharyngodon idellus) fillets during storage at 4 °C. Food Chem. 272, 643–652 (2019). https://doi.org/10.1016/j.foodchem.2018.08.040

    Article  CAS  PubMed  Google Scholar 

  59. A.D.J. de Farias Marques, J. de Lima Tavares, L.M. de Carvalho, T. Leite Abreu, D. Alves Pereira, M. Moreira Fernandes Santos, M. Suely Madruga, L.L. de Medeiros, T. Kênia Alencar Bezerra, Oxidative stability of chicken burgers using organic coffee husk extract. Food Chem. 393, 133451 (2022). https://doi.org/10.1016/j.foodchem.2022.133451

    Article  CAS  PubMed  Google Scholar 

  60. M. Manzoor, J. Singh, A. Gani, N. Noor, Valorization of natural colors as health-promoting bioactive compounds: phytochemical profile, extraction techniques, and pharmacological perspectives. Food Chem. 362, 130141 (2021). https://doi.org/10.1016/j.foodchem.2021.130141

    Article  CAS  PubMed  Google Scholar 

  61. H. Zhang, X. Peng, X. Li, J. Wu, X. Guo, The application of clove extract protects Chinese-style sausages against oxidation and quality deterioration. Korean J. Food Sci. Anim. Resour. 37, 114–122 (2017). https://doi.org/10.5851/kosfa.2017.37.1.114

    Article  PubMed  PubMed Central  Google Scholar 

  62. M.M. Campo, G.R. Nute, S.I. Hughes, M. Enser, J.D. Wood, R.I. Richardson, Flavour perception of oxidation in beef. Meat Sci. 72, 303–311 (2006). https://doi.org/10.1016/j.meatsci.2005.07.015

    Article  CAS  PubMed  Google Scholar 

  63. O. Özünlü, H. Ergezer, R. Gökçe, Improving the physicochemical, antioxidative and sensory quality of raw chicken meat by using acorn extracts. LWT 98, 477–484 (2018). https://doi.org/10.1016/j.lwt.2018.09.007

    Article  CAS  Google Scholar 

  64. M. Nardoia, C. Ruiz-Capillas, D. Casamassima, A.M. Herrero, T. Pintado, F. Jiménez-Colmenero, A. Brenes, Effect of polyphenols dietary grape by-products on chicken patties. Eur. Food Res. Technol. 244, 367–377 (2018). https://doi.org/10.1007/s00217-017-2962-7

    Article  CAS  Google Scholar 

  65. M. Fourati, S. Smaoui, K. Ennouri, H. Ben Hlima, K. Elhadef, A. Chakchouk-Mtibaa, I. Sellem, L. Mellouli, Multiresponse optimization of pomegranate peel extraction by statistical versus artificial intelligence: predictive approach for foodborne bacterial pathogen inactivation. Evid. Based Complement. Altern. Med. 2019, 1–18 (2019). https://doi.org/10.1155/2019/1542615

    Article  Google Scholar 

  66. Y. Sıcak, A. Şahin-Yağlıoğlu, M. Öztürk, Bioactivities and phenolic constituents relationship of Muğla Thyme and pine honey of Turkey with the chemometric approach. Food Meas. 15, 3694–3707 (2021). https://doi.org/10.1007/s11694-021-00940-8

    Article  Google Scholar 

  67. X. Song, Y. Jiang, Y. Zhong, D. Wang, Y. Deng, Evaluation of radio frequency-assisted enzymatic extraction of non-anthocyanin polyphenols from Akebia trifoliata flowers and their biological activities using UPLC-PDA-TOF-ESI-MS and chemometrics. Foods 11, 3410 (2022). https://doi.org/10.3390/foods11213410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. W. Katiyo, H.L. de Kock, R. Coorey, E.M. Buys, Sensory implications of chicken meat spoilage in relation to microbial and physicochemical characteristics during refrigerated storage. LWT 128, 109468 (2020). https://doi.org/10.1016/j.lwt.2020.109468

    Article  CAS  Google Scholar 

  69. R. Domínguez, M. Pateiro, P.E.S. Munekata, W. Zhang, P. Garcia-Oliveira, M. Carpena, M.A. Prieto, B. Bohrer, J.M. Lorenzo, Protein oxidation in muscle foods: a comprehensive review. Antioxidants 11, 60 (2021). https://doi.org/10.3390/antiox11010060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. S. Smaoui, K. Ennouri, A. Chakchouk-Mtibaa, I. Karray-Rebai, M. Hmidi, K. Bouchaala, L. Mellouli, Relationships between textural modifications, lipid and protein oxidation and sensory attributes of refrigerated Turkey meat sausage treated with bacteriocin BacTN635. Food Bioprocess. Technol. 10, 1655–1667 (2017). https://doi.org/10.1007/s11947-017-1933-0

    Article  CAS  Google Scholar 

  71. E. da Nóbrega Santos, T.C. de Albuquerque Sousa, D. de Cassiano, C.V. Brandão Grisi, V.C. da Silva Ferreira, F.A.P. da Silva, Edible active film based on gelatin and malpighia emarginata waste extract to inhibit lipid and protein oxidation in beef patties. LWT 154, 112837 (2022). https://doi.org/10.1016/j.lwt.2021.112837

    Article  CAS  Google Scholar 

  72. B. Zhao, H. Zhou, S. Zhang, X. Pan, S. Li, N. Zhu, Q. Wu, S. Wang, X. Qiao, W. Chen, Changes of protein oxidation, lipid oxidation and lipolysis in Chinese dry sausage with different sodium chloride curing salt content. Food Sci. Hum. Wellness 9, 328–337 (2020). https://doi.org/10.1016/j.fshw.2020.04.013

    Article  Google Scholar 

  73. Z. Guo, L. Han, Q. Yu, L. Lin, Effect of a sea buckthorn pomace extract-esterified potato starch film on the quality and spoilage bacteria of beef jerky sold in supermarket. Food Chem. 326, 127001 (2020). https://doi.org/10.1016/j.foodchem.2020.127001

    Article  CAS  PubMed  Google Scholar 

  74. R.H. Carvalho, E.I. Ida, M.S. Madruga, S.L. Martínez, M. Shimokomaki, M. Estévez, Underlying connections between the redox system imbalance, protein oxidation and impaired quality traits in Pale, Soft and Exudative (PSE) poultry meat. Food Chem. 215, 129–137 (2017). https://doi.org/10.1016/j.foodchem.2016.07.182

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding information is not applicable.

Author information

Authors and Affiliations

Authors

Contributions

KE, MC, SA, LM, and SS were involved in methodology, data curation, and writing—original draft preparation; KE, NPN, AMK, SA, and PM contributed to resources and formal analysis; KE, MC, SA, and DSA were involved in software and validation; and SS was involved in supervision and project administration.

Corresponding author

Correspondence to Slim Smaoui.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Ethics and professionalism governed all authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elhadef, K., Chaari, M., Akermi, S. et al. Production of functional raw chicken meat by incorporation of date palm seed extract: an assessment of microbiological, chemical and sensory properties. Food Measure 17, 5117–5133 (2023). https://doi.org/10.1007/s11694-023-02017-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02017-0

Keywords

Navigation