Skip to main content

Sensitive and visual determination of sulfamethazine in milk and drinking water using aggregation-induced emission fluorescent sensor based on luminol-europium nanocomposites

Abstract

Considering the excessive residue and serious harm of sulfamethazine (SM2), the sensitive determination of SM2 has attracted wide attention in ensuring food security and human health. Herein, using the unique fluorescence property of aggregation-induced emission (AIE), we reported a simple and sensitive detection approach of SM2 residues in milk and drinking water. Firstly, luminol-europium nanocomposites (luminol-Eu NCs) were self-assembly synthesized via AIE strategy. Then, the fluorescence emission of luminol-Eu NCs could be quenched by SM2 due to the inner filter effect (IFE). As a result, the fluorescent sensor based on luminol-Eu NCs displayed a wide linear response for SM2 in a concentration range of 0.1–500 µmol/L and a detection limit of 90 nmol/L was obtained. Furthermore, semi-quantitative detection of SM2 on test papers was realized via a smartphone-assisted visual sensing device. Therefore, this fluorescent sensor shows a potential value in the field of food safety assessment.

Graphical abstract

An aggregation-induced emission fluorescent sensor based on luminol-europium nanocomposites was developed and applied for sensitive and visual detection of sulfamethazine in milk and drinking water.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Wang, C. Gong, Y. Zhu, Q. Wang, L. Geng, Signal-on electrochemical aptasensor for sensitive detection of sulfamethazine based on carbon quantum dots/tungsten disulfide nanocomposites. Electrochim. Acta 393, 139054 (2021)

    Article  CAS  Google Scholar 

  2. B. Fang, S. Hu, C. Wang, M. Yuan, Z. Huang, K. Xing, D. Liu, J. Peng, W. Lai, Lateral flow immunoassays combining enrichment and colorimetry-fluorescence quantitative detection of sulfamethazine in milk based on trifunctional magnetic nanobeads. Food Control 98, 268–273 (2019)

    Article  CAS  Google Scholar 

  3. N. Zhu, Y. Zhu, J. Wang, E. Gyimah, X. Hu, Z. Zhang, A novel fluorescence immunoassay based on AgNCs and ALP for ultrasensitive detection of sulfamethazine (SMZ) in environmental and biological samples. Talanta 199, 72–79 (2019)

    Article  CAS  PubMed  Google Scholar 

  4. L. Yang, H. Ni, C. Li, X. Zhang, K. Wen, Y. Ke, H. Yang, W. Shi, S. Zhang, J. Shen, Z. Wang, Development of a highly specific chemiluminescence aptasensor for sulfamethazine detection in milk based on in vitro selected aptamers. Sens. Actuators B 281, 801–811 (2019)

    Article  CAS  Google Scholar 

  5. D. Peng, Z. Li, Y. Wang, Z. Liu, F. Sheng, Z. Yuan, Enzyme-linked immunoassay based on imprinted microspheres for the detection of sulfamethazine residue. J. Chromatogr. A 1506, 9–17 (2017)

    Article  CAS  PubMed  Google Scholar 

  6. S. Wang, Z. Wang, L. Zhang, Y. Xu, J. Xiong, H. Zhang, Z. He, Y. Zheng, H. Jiang, J. Shen, Adsorption and convenient ELISA detection of sulfamethazine in milk based on MOFs pretreatment. Food Chem. 374, 131712 (2022)

    Article  CAS  PubMed  Google Scholar 

  7. C. Chen, X. Zhang, Z. Long, J. Zhang, C. Zheng, Molecularly imprinted dispersive solid-phase microextraction for determination of sulfamethazine by capillary electrophoresis. Microchim. Acta 178(3), 293–299 (2012)

    Article  CAS  Google Scholar 

  8. Z. Wang, K. Xing, N. Ding, S. Wang, G. Zhang, W. Lai, Lateral flow immunoassay based on dual spectral-overlapped fluorescence quenching of polydopamine nanospheres for sensitive detection of sulfamethazine. J. Hazard. Mater. 423, 127204 (2022)

    Article  CAS  PubMed  Google Scholar 

  9. M. Yang, X. Wu, X. Hu, K. Wang, C. Zhang, E. Gyimah, S. Yakubu, Z. Zhang, Electrochemical immunosensor based on Ag+-dependent CTAB-AuNPs for ultrasensitive detection of sulfamethazine. Biosens. Bioelectron. 144, 111643 (2019)

    Article  CAS  PubMed  Google Scholar 

  10. L. Xia, L. Liu, X. Lv, F. Qu, G. Li, J. You, Towards the determination of sulfonamides in meat samples: a magnetic and mesoporous metal–organic framework as an efficient sorbent for magnetic solid phase extraction combined with high-performance liquid chromatography. J. Chromatogr. A 1500, 24–31 (2017)

    Article  CAS  PubMed  Google Scholar 

  11. W. Jansomboon, S.K. Boontanon, N. Boontanon, C. Polprasert, C. Thi Da, Monitoring and determination of sulfonamide antibiotics (sulfamethoxydiazine, sulfamethazine, sulfamethoxazole and sulfadiazine) in imported Pangasius catfish products in Thailand using liquid chromatography coupled with tandem mass spectrometry. Food Chem. 212, 635–640 (2016)

    Article  CAS  PubMed  Google Scholar 

  12. A. Umit, A new fluorescent chemosensor for selective and sensitive detection of Mn2+ in acidic medium. Adv. Biol. Chem. 12, 161–170 (2022)

    Article  CAS  Google Scholar 

  13. X. Yue, Z. Zhou, M. Li, M. Jie, B. Xu, Y. Bai, Inner-filter effect induced fluorescent sensor based on fusiform Al-MOF nanosheets for sensitive and visual detection of nitrofuran in milk. Food Chem. 367, 130763 (2022)

    Article  CAS  PubMed  Google Scholar 

  14. M. Jie, R. Guo, Y. Zhang, J. Huang, G. Xu, M. Li, X. Yue, B. Ji, Y. Bai, A facile fluorescent sensor based on nitrogen-doped carbon dots derived from Listeria monocytogenes for highly selective and visual detection of iodide and pH. RSC Adv. 12(12), 7295–7305 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. J. Luo, Z. Xie, J. Lam, L. Cheng, H. Chen, C. Qiu, H. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Tang, Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole, Chem. Commun. 18, 1740–1741 (2001)

  16. Y. Hong, J. Lam, B. Tang, Aggregation-induced emission, Chem. Soc. Rev. 40, 5361–5388 (2011)

  17. L. Yu, H. Chen, J. Yue, X. Chen, M. Sun, H. Tan, A.M. Asiri, K.A. Alamry, X. Wang, S. Wang, Metal–organic framework enhances aggregation-induced fluorescence of chlortetracycline and the application for detection. Anal. Chem. 91(9), 5913–5921 (2019)

    Article  CAS  PubMed  Google Scholar 

  18. X. Xue, Y. Zhao, L. Dai, X. Zhang, X. Hao, C. Zhang, S. Huo, J. Liu, C. Liu, A. Kumar, W.-Q. Chen, G. Zou, X.-J. Liang, Spatiotemporal drug release visualized through a drug delivery system with tunable aggregation-induced emission. Adv. Mater. 26(5), 712–717 (2014)

    Article  CAS  PubMed  Google Scholar 

  19. C. Xu, Y. Zhou, Z. Li, Y. Zhou, X. Liu, X. Peng, Rational design of AIE-based fluorescent probes for hypochlorite detection in real water samples and live cell imaging. J. Hazard. Mater. 418, 126243 (2021)

    Article  CAS  PubMed  Google Scholar 

  20. J. Chen, X. Chen, J. Zhao, S. Liu, Z. Chi, Instrument-free and visual detection of organophosphorus pesticide using a smartphone by coupling aggregation-induced emission nanoparticle and two-dimension MnO2 nanoflake. Biosens. Bioelectron. 170, 112668 (2020)

    Article  CAS  PubMed  Google Scholar 

  21. A. Kumar, P.S. Chae, Aggregation induced emission enhancement behavior of conformationally rigid pyreneamide-based probe for ultra-trace detection of picric acid (PA). Dyes Pigm. 156, 307–317 (2018)

    Article  CAS  Google Scholar 

  22. C. Lv, X. Guo, Y. Hou, W. Liu, Y. Guo, Z. Zhang, Y. Jin, B. Li, Long-lasting luminol chemiluminescence emission with 1,10-phenanthroline-2,9-dicarboxylic acid copper(II) complex on paper. ACS Appl. Mater. Interfaces 13(45), 53787–53797 (2021)

    Article  CAS  PubMed  Google Scholar 

  23. Z. Li, Y. Xi, A. Zhao, J. Jiang, B. Li, X. Yang, J. He, F. Li, Cobalt-imidazole metal–organic framework loaded with luminol for paper-based chemiluminescence detection of catechol with use of a smartphone. Anal. Bioanal. Chem. 413(13), 3541–3550 (2021)

    Article  CAS  PubMed  Google Scholar 

  24. Y.-J. Tong, A.-M. Song, L.-D. Yu, R.-P. Liang, J.-D. Qiu, Aggregation-induced fluorescence of the luminol-terbium(III) complex in polymer nanoparticles for sensitive determination of thrombin. Microchim. Acta 187(1), 53 (2020)

    Article  CAS  Google Scholar 

  25. W. Qi, M. Zhao, Y. Fu, H. He, X. Tian, D. Wu, Y. Zhang, P. Hu, Fluorescent detection of uric acid through photoinduced electron transfer using luminol-terbium(III) nanoparticles synthesized via aggregation-induced fluorescence strategy. Dyes Pigm. 172, 107797 (2020)

    Article  CAS  Google Scholar 

  26. Y.-J. Tong, L.-D. Yu, L.-L. Wu, S.-P. Cao, Y.-L. Guo, R.-P. Liang, J.-D. Qiu, Ratiometric detection of Cu2+ using a luminol-Tb-GMP nanoprobe with high sensitivity and selectivity. ACS Sustain. Chem. Eng. 6(7), 9333–9341 (2018)

    Article  CAS  Google Scholar 

  27. Y.-J. Tong, L.-D. Yu, L.-L. Wu, S.-P. Cao, R.-P. Liang, L. Zhang, X.-H. Xia, J.-D. Qiu, Aggregation-induced emission of luminol: a novel strategy for fluorescence ratiometric detection of ALP and As(v) with high sensitivity and selectivity. Chem. Commun. 54, 7487–7490 (2018)

    Article  CAS  Google Scholar 

  28. R. Yao, Z. Li, G. Liu, C. Fan, S. Pu, Luminol-Eu-based ratiometric fluorescence probe for highly selective and visual determination of tetracycline. Talanta 234, 122612 (2021)

    Article  CAS  PubMed  Google Scholar 

  29. H. Cui, W. Wang, C.-F. Duan, Y.-P. Dong, J.-Z. Guo, Synthesis, characterization, and electrochemiluminescence of luminol-reduced gold nanoparticles and their application in a hydrogen peroxide sensor  Chem. Eur. J. 13(24), 6975–6984 (2007)

    CAS  PubMed  Google Scholar 

  30. C.-X. Zhao, X.-P. Zhang, Y. Shu, J.-H. Wang, Europium-pyridinedicarboxylate-adenine light-up fluorescence nanoprobes for selective detection of phosphate in biological fluids. ACS Appl. Mater. Interfaces 12(20), 22593–22600 (2020)

    Article  CAS  PubMed  Google Scholar 

  31. R. Yao, Z. Li, P. Huo, C. Gong, J. Li, C. Fan, S. Pu, A Eu3+-based high sensitivity ratiometric fluorescence sensor for determination of tetracycline combining bi-functional carbon dots by surface functionalization and heteroatom doping. Dyes Pigm. 201, 110190 (2022)

    Article  CAS  Google Scholar 

  32. X. Han, X. Zhang, L. Zhong, X. Yu, H. Zhai, Preparation of sulfamethoxazole molecularly imprinted polymers based on magnetic metal–organic frameworks/graphene oxide composites for the selective extraction of sulfonamides in food samples. Microchem. J. 177, 107259 (2022)

    Article  CAS  Google Scholar 

  33. X. Jia, P. Zhao, X. Ye, L. Zhang, T. Wang, Q. Chen, X. Hou, A novel metal–organic framework composite MIL-101(Cr)@GO as an efficient sorbent in dispersive micro-solid phase extraction coupling with UHPLC-MS/MS for the determination of sulfonamides in milk samples. Talanta 169, 227–238 (2017)

    Article  CAS  PubMed  Google Scholar 

  34. S. Yin, C. Tong, Lanthanide coordination polymer nanoparticles as a ratiometric fluorescence sensor for real-time and visual detection of tetracycline by a smartphone and test paper based on the analyte-triggered antenna effect and inner filter effect. Anal. Chim. Acta 1206, 339809 (2022)

    Article  CAS  PubMed  Google Scholar 

  35. Y. Hao, W. Dong, Y. Liu, X. Wen, S. Shuang, Q. Hu, C. Dong, X. Gong, Nitrogen-doped carbon dots coupled with morin-Al3+: cleverly design an integrated sensing platform for ratiometric optical dual-mode and smartphone-assisted visual detection of fluoride ion. J. Hazard. Mater. 439, 129596 (2022)

    Article  CAS  PubMed  Google Scholar 

  36. K. Yang, P. Jia, J. Hou, T. Bu, X. Sun, Y. Liu, L. Wang, Innovative dual-emitting ratiometric fluorescence sensor for tetracyclines detection based on boron nitride quantum dots and europium ions. ACS Sustain. Chem. Eng. 8(46), 17185–17193 (2020)

    Article  CAS  Google Scholar 

  37. J.Q. Alves, L.N.C. Máximo, L.P. Franco, R.S. da Silva, M.F. de Oliveira, Fluorescence-quenching CdTe quantum dots applied for identification of cocaine-structure analogues. Anal. Methods 11(2), 185–191 (2019)

    Article  CAS  Google Scholar 

  38. Y. Chen, Q. Wang, L. Liu, F. Tian, Fluorescence quenching and measurement of glutathione in fresh vegetables. J. Food Meas. Charact. 12(1), 221–227 (2018)

    Article  Google Scholar 

  39. Q. Li, S. Xu, L. He, K. Huang, X. Zhang, D. Qin, A new zinc-organic framework with 1D channel for constructing a ratiometric Al3+-selective sensor and four inputs INHIBIT logic gate. Spectrochim. Acta A 279, 121461 (2022)

    Article  CAS  Google Scholar 

  40. S. Chu, H. Wang, X. Ling, S. Yu, L. Yang, C. Jiang, A portable smartphone platform using a ratiometric fluorescent paper strip for visual quantitative sensing. ACS Appl. Mater. Interfaces 12(11), 12962–12971 (2020)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Key Scientific and Technological Project of Henan Province (No: 202102110140).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingsha Jie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1290 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jie, M., Lan, S., Lu, C. et al. Sensitive and visual determination of sulfamethazine in milk and drinking water using aggregation-induced emission fluorescent sensor based on luminol-europium nanocomposites. Food Measure 17, 3173–3184 (2023). https://doi.org/10.1007/s11694-023-01869-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-01869-w

Keywords