Skip to main content
Log in

Characterization of inulin, a prebiotic fiber sourced from okra (Abelmoschus esculentus L.) pod and its quality compared to chicory (Cichorium intybus L.) inulin

  • Original Research
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Industrial demand for commercial inulin, a fructan type of polysaccharide and prebiotic fiber from Chicory (Cichorium intybus L.) root continues to outstrip supply. Possible alternative source to mitigate this challenge such as Okra (Abelmoschus esculentus L.) pod remains neglected and unexplored owing to dearth of scientific data. The objective of this study therefore is to extract, analyze and make comparative quality assessment of inulin from these two sources (okra pods and chicory roots). Inulin was extracted from sundried and oven-dried okra pods by differential precipitation with ethanol (0–20, 20–40, 40–60, 60–80 and 80–100%) from the aqueous extracts of sundried and oven-dried okra pods. The inulin samples isolated were characterized and its quality attributes compared with that of commercial chicory inulin. Results obtained showed that the okra pod had an inulin content of 11.59 g/dry matter, purity (95.00–96.05%) and degree of polymerization (DP) (15.04–15.50). These compared favorably with other quality parameters of chicory inulin such as percentage purity (97.01) and DP (17.55). Comparatively, the quality of inulin from these two sources (okra pods and chicory roots) is not significantly different (P ≤ 0.05). Also, parameters such as pH (5.95–5.96); titratable acidity (0.12–0.4%); moisture content (5.07–6.05%); water activity (0.51–0.57); melting point (177.57–179.10 °C); solubility (24.07–24.57 g/l) and molecular weight (2627–2630) of sundried and oven-dried okra pods inulin samples fall within specification sought by its industrial users. Indeed, commercial inulin sourced from chicory may well be substituted by those from okra pod, currently under exploited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. N. Petkova, M. Ogunyanov, M. Todorova, P. Denev, J. Sci. Nat. 1, 225–235 (2015)

    Google Scholar 

  2. S. Wichienchot, P. Thammarutwasik, A. Jongjareonrak, W. Chansuwan, P. Hmadhlu, T. Hongpattarakere, A. Itharat, B. Ooraikul, J. Sci. Technol. 33, 517–523 (2011)

    CAS  Google Scholar 

  3. L. Jing, H. Dejun, Z. Wanrong, L. Guangping, Z. Jing, L. Shaoping, J. Agric. Food Chem. 62, 7707–7713 (2014)

    Article  Google Scholar 

  4. Y. Siok-Koon, O. Lay-Gaik, L. Ting-Jin, L. Min-Tze, Int. J. Molec. Sci. 10, 3517–3530 (2009)

    Article  Google Scholar 

  5. O. Lay-Gaik, L. Min-Tze, Int. J. Mole. Sci. 11, 2499–2522 (2010)

    Article  Google Scholar 

  6. W.B. Muhammad, N. Aamir, W.G. Muhammad, L. Guanghui, X. Mei, A. Lilong, A. J. Food Technol. Res. 6, 18–27 (2019)

    Article  Google Scholar 

  7. W. Li, J. Zhang, C. Yu, Q. Li, F. Dong, G. Wang, G. Gu, Z. Guo, Carbohydr. Poly. 121, 315–319 (2015)

    Article  CAS  Google Scholar 

  8. D. Vassilev, N. Petkova, M. Koleva, P. Denev, J. Rew Mat. l 4, 24–30 (2016)

    CAS  Google Scholar 

  9. N. Petkova, G. Sherova, P. Denev, Int. Food Res. 25, 1876–1884 (2018)

    CAS  Google Scholar 

  10. Z. Zhu, O. Bals, N. Grimi, N. Vorobiev, Int. J. Food Sci. Technol. 47, 1361–1368 (2012)

    Article  CAS  Google Scholar 

  11. M. Temkov, N. Petkova, P. Denev, A. Krastanov, Sci. Works Univ. Food Technol. 62, 461–464 (2015)

    Google Scholar 

  12. FAOSTAT, Food and Agricultural Organization of the United Nation. Online and Multilingual Database. (2021). http://www.faostat.fao.org/faostat. Accessed 16 Aug 2021

  13. A. Jain, S.R. Sharma, T.C. Mittal, S.K. Gupta, Int. Inno. Res. Technol. 1, 1–8 (2014)

    Google Scholar 

  14. P. Singh, V. Chauhan, B.K. Tiwari, S.S. Chauhan, S. Simon, S. Bilal, A.B. Abidi, Int. J. Pharm. Biolo. Sci. 4, 227–233 (2018)

    Google Scholar 

  15. E.K. Tsado, Don. J. Agric. Res. 2, 066–070 (2015)

    Google Scholar 

  16. N. Petkova, M. Ognyanov, P. Denev, University of Plovdiv. Paish Hilendaski 39, 25–34 (2014)

    Google Scholar 

  17. C.S. Kishan, A.R. Akhila, S. Subhashree, P.K. Kulkarni, Int J. Appl. Pharm. 13, 30–38 (2021)

    Article  CAS  Google Scholar 

  18. G.L. Arueya, O.F. Osundahunsi, J. Food Sci. 44, 030–041 (2015)

    Google Scholar 

  19. G.I. Onwuka, Food analysis and instrumentation (Naphthali Prints, Lagos, 2005), pp. 64–155

    Google Scholar 

  20. AOAC, Official methods of analysis, 18th edn. (Association of Official Analytical Chemists, Gaithersburg, 2010)

    Google Scholar 

  21. D. Lopez-Molina, M.D. Navarro-Martinez, F.R. Melgarejo, A.N.P. Hiner, S. Chazarra, J.N. Rodriguez, J. Phytochem. 66, 1476–1484 (2005)

    Article  CAS  Google Scholar 

  22. T.A.T. Wahua, Applied statistics for scientific studies (African Links Publishing Press, Aba, 1999), pp. 129–155

    Google Scholar 

  23. I. Irina, G. Mohamed, Advances in Appl. Biotech. 101–124 (2012)

  24. E. Chiavaro, E. Vittadini, C. Corradini, Europ. Food Res. Technol. 225(1), 85–94 (2007)

    Article  CAS  Google Scholar 

  25. P.F.G. Raquel, J.B. Maria, J. Food Biopro. Proc. 90, 58–63 (2012)

    Article  Google Scholar 

  26. M.L. Beirao-Da-Costa, M.I. Januario, E.B. Antonio, F.M.L. Simao, Aliment. Nutr. Ararquara 16, 221–225 (2005)

    CAS  Google Scholar 

  27. G. Adegoke, Understanding food microbiology, 2nd edn. (Alleluia Ventures Limited Publishers, Ibadan, 2004)

    Google Scholar 

  28. W.C. Frazier, D.C. Westhoff, Food microbiology, 5th edn. (Tata McGraw Hill Publication company, New York, 2005), pp. 311–113

    Google Scholar 

  29. C. Eleazu, K. Eleazu, E. Awa, S. Chukwuma, J. Biotechnol. Pharmaceut. Res. 3, 42–46 (2002)

    Google Scholar 

  30. B. Taani, M. Khanfar, O.A. Alsuod, Int. J. Appl. Pharma 10, 42–48 (2008)

    Google Scholar 

  31. C.S. Blecker, J.P. Chevalier, C. Fougnies, J.C. Van Herck, C. Deroanne, M. Paquot, J. Therm. Anal Calorim. 71, 215–224 (2003)

    Article  CAS  Google Scholar 

  32. Y. Kriukova, A. Jakubiak-Augustyn, N. Illyinska, H. Krotikiewski, T. Gontova, O. Evtifeyeva, T. Ozcelik, A. Matkowski, Int. J. Food Prop. 20, 3112–3122 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors hereby acknowledges the staff and students of the Department of Food Technology, University of Ibadan for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uchenna Cyprian Umeonuorah.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 681 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umeonuorah, U.C., Arueya, G.L. Characterization of inulin, a prebiotic fiber sourced from okra (Abelmoschus esculentus L.) pod and its quality compared to chicory (Cichorium intybus L.) inulin. Food Measure 16, 4364–4371 (2022). https://doi.org/10.1007/s11694-022-01520-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01520-0

Keywords

Navigation