Skip to main content
Log in

Effect of combination pre-treatment conditions on the physicochemical properties, antioxidant activities, and sensory acceptability of Carica papaya L. Eksotika juice

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Response Surface Methodology (RSM) was employed in determining the effects of acidified blanching and pectinase enzyme treatments on the physicochemical properties, antioxidant activities, and sensory acceptability of Carica papaya juice. A two-factor central composite design (CCD) was used in this study (acidified blanching, 0.5–1.5%, w/v citric acid, and pectinase enzyme treatment, 10–30 ppm) to establish the optimum conditions for the processing of papaya juice. Acidified blanching and pectinase enzyme treatments are two variables which affect the physicochemical properties, antioxidant activities, and sensory acceptability of papaya juice. The changes in yield, clarity, antioxidant activities, and sensory acceptability of papaya juice were established by coefficients of determination, R2 as observed at 0.8707, 0.757, 0.7082 to 0.924, and 0.738 to 0.806, respectively. Increased acid concentrations in blanching water resulted in a positive quadratic effect (P < 0.05) on juice clarity. In comparison to untreated (control) papaya juice, acidified blanching and pectinase enzyme treatment resulted in papaya juice with greater total flavonoid content. However, increased pectinase enzyme concentrations were found to have a negative impact on sensory acceptance. The optimum predicted response conditions to produce papaya juice with high antioxidant activities and consumer acceptability were obtained from a combination of acidified blanching at 1% (w/v) citric acid and 20 ppm pectinase enzyme treatment. RSM is a valuable tool for optimizing the combination of acidified blanching and pectinase enzymatic treatments in producing papaya juice with high antioxidant activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. P.M. Gurditta, Int. Res. J. Pharm. 2, 6–12 (2011)

    Google Scholar 

  2. E.A. Evans, F.H. Ballen, EDIS. 1–6 (2012)

  3. M. Shahbandeh, Global papaya production 2000–2019. https://www.statista.com/statistics/578039/world-papaya-production/ Accessed 15 October 2021

  4. FAOSTAT, Crops Production Data, Food and Agriculture Organization of the United States (2018). http://www.fao.org/faostat/en/#data/QC/ Accessed 26 September 2021

  5. I. Hamim, M. Alam, M. Ali, M. Ashrafuzzaman, J. Bangladesh Agril Univ. 12, 1, 25–28 (2014)

    Article  Google Scholar 

  6. R. Sekeli, M.H. Hamid, R.A. Razak, W. Chien-Yeong, J.O. Abdullah, Front. Plant Sci. (2018) https://doi.org/10.3389/fpls.2018.01380

  7. B.V. Vishal, A.S. Chauhan, M.N. Rekha, P.S. Negi, Food Sci. Nutr. (2015) https://doi.org/10.11648/j.jfns.20150303.12

    Article  Google Scholar 

  8. J.H. Moy, EFSN. (2003) https://doi.org/10.1016/b0-12-227055-x/00881-6

  9. D. Djokoto, V.P. Dzogbefia, J.H. Oldham, Food Biotechnol. (2006) https://doi.org/10.1080/08905430500523970

    Article  Google Scholar 

  10. J. Oszmiański, A. WojdyŁo, J. Kolniak, J. Agric. Food Chem. (2009) https://doi.org/10.1021/jf900806u

    Article  PubMed  Google Scholar 

  11. A.W. Munyaka, I. Oey, A.V. Loey, M. Hendrickx, Food Chem. (2010) https://doi.org/10.1016/j.foodchem.2009.10.029

  12. V. Khandare, S. Walia, M. Singh, C. Kaur, Food Bioprod. Process. (2011) https://doi.org/10.1016/j.fbp.2010.07.007

  13. I.G. Sandri, C.M.T. Lorenzoni, R.C. Fontana, M.M. da Silveira, LWT - Food Sci. Technol. (2013) https://doi.org/10.1016/j.lwt.2012.10.015

  14. S. Jabbar, M. Abid, T. Wu, M.M. Hashim, B. Hu, S. Lei, X. Zhu, X. Zeng, Int. J. Food Sci. Nutr. (2014) https://doi.org/10.3109/09637486.2013.836735

    Article  PubMed  Google Scholar 

  15. I.R.F. Guiamba, U. Svanberg, Food Sci. Nutr. (2016) https://doi.org/10.1002/fsn3.335

  16. G. Gani, H.R. Naik, N. Jan, O. Bashir, S.Z. Hussain, A.H. Rather, A. Reshi, T. Amin, J. Food Meas. Charact. (2020) https://doi.org/10.1007/s11694-020-00676-x

    Article  Google Scholar 

  17. R.R. Felipe, New perspectives on food blanching: Effect of blanching on food physical, chemical, and sensory quality. (2017) https://doi.org/10.1007/978-3-319-48665-9_2 Accessed 28 October 2021

  18. J. Nie, D. Chen, Y. Lu, Z. Dai, LWT-Food Sci. Technol. (2021) https://doi.org/10.1016/j.lwt.2021.111179

  19. T. Sun, J.R. Powers, J. Tang, J., Food Chem. (2007) https://doi.org/10.1016/j.foodchem.2007.03.062

  20. B.K. Sakhale, V.N. Pawar, S.S. Gaikwad, Int. Food Res. J. 23, 2, 860–865 (2016)

    CAS  Google Scholar 

  21. R. Siti Rashima, W.L. Ong, Z. Aina Nadiah, M. Maizura, J. Food. Sci. 1–12 (2022)

  22. W.C. Lee, S. Yusof, N.S.A. Hamid, B.S. Baharin, J. Food Eng. (2006) https://doi.org/10.1016/j.jfoodeng.2005.01.005

    Article  Google Scholar 

  23. AOAC, The Association of Official Analytical Chemists, 17th edn. (Gaithersburg, MD, USA, 2000)

    Google Scholar 

  24. W.F. Gomes, F.R.M. França, M. Denadai, J.K.S. Andrade, E.M.S. Oliveira, E.S. de Brito, S. Rodrigues, N. Narain, J. Food Sci. Technol. 55, 2095–2102 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Z.R. Addai, A. Abdullah, S.A. Mutalib, K.H. Musa, E.M.A. Douqan, Adv. J. Food Sci. Technol. 5, 7, 859–865 (2013)

    Article  CAS  Google Scholar 

  26. R. Chen, W. Chen, H. Chen, G. Zhang, W. Chen, J. Food Qual. (2018) https://doi.org/10.1155/2018/9490435

  27. M. Maizura, A. Aminah, W.M. Wan Aida, LWT - Food Sci. Technol. (2016) https://doi.org/10.1016/j.lwt.2015.07.062

  28. D.M. Rivera-Pastrana, E.M. Yahia, G.A. González-Aguilar, J. Sci. Food Agric. (2010) https://doi.org/10.1002/jsfa.4092

  29. L.C. Devitt, K. Fanning, R.G. Dietzgen, T.A.Holton, J. Exp. Bot. (2010) https://doi.org/10.1093/jxb/erp284

  30. H.W. Xiao, Z. Pan, L.Z. Deng, H.M. El-Mashad, X.H. Yang, A.S. Mujumdar, Z.J. Gao, Q. Zhang, Process. Agric. (2017) https://doi.org/10.1016/j.inpa.2017.02.001

  31. V.P. Dzogbefia, D.K. Djokoto, J. Food Biochem. (2006) https://doi.org/10.1111/j.1745-4514.2005.00046.x

  32. T. Yamaguchi, M. Katsuda, Y. Oda, J. Terao, K. Kanazawa, S. Oshima, T. Inakuma, Y. Ishiguro, H. Takamura, T. Matoba, Food Sci. Technol. Res. (2003) https://doi.org/10.3136/fstr.9.79

  33. H.S. Ramaswamy, M. Marcotte, Food processing: Principles and applications (Taylor and Francis, Boca Raton, USA, 2005)

    Book  Google Scholar 

  34. P.K.P.D. Wanasundara, F. Shahidi, in Bailey’s industrial oil and fat products: Chemistry, properties and health effects, ed. by F. By, Shahidi (John Wiley and Sons, Inc., New Jersey, 2005), pp. 431–489

    Google Scholar 

  35. H.A. Essa, M.F. Salama, Nahrung/Food (2002) https://doi.org/10.1002/1521-3803(20020701)46:4<245::AID-FOOD245>3.0.CO;2-I

  36. F. Abbès, W. Kchaou, C. Blecker, M. Ongena, G. Lognay, H. Attia, S. Besbes, Ind. Crop. Prod. (2013) https://doi.org/10.1016/j.indcrop.2012.09.008

  37. D. Ghosh, P.K. Biswas, Indian. Chem. Eng. (2016) https://doi.org/10.1080/00194506.2015.1046697

  38. F. Sarr, P.J. Tsai, P.J., J. Food Qual. (2008) https://doi.org/10.1111/j.1745-4557.2007.00182.x

  39. D. Pujimulyani, S. Raharjo, Y. Marsono, U. Santoso, Int. Food Res. J. 17, 615–621 (2010)

    CAS  Google Scholar 

  40. L.G.G. Rodrigues, S. Mazzutti, L. Vitali, G.A. Micke, S.R.S. Ferreira, Biocatal. Agric. Biotechnol. (2019) https://doi.org/10.1016/j.bcab.2019.101367

  41. M.S. Fernandez-Pachon, D. Villano, M.C. Garcia-Parrilla, A.M. Troncoso, Anal. Chim. Acta. (2004) https://doi.org/10.1016/j.aca.2004.02.028

  42. C. Giacomelli, F.S. Miranda, N.S. Gonçalves, A. Spinelli, Redox Rep. (2004) https://doi.org/10.1179/135100004225006038

  43. B. Hiranvarachat, S. Devahastin, N. Chiewchan, G.S. Vijaya Raghavan, J. Food Eng. (2013) https://doi.org/10.1016/j.jfoodeng.2012.10.012

  44. T. Sun, J. Tang, J.R. Powers, J. Agric. Food Chem. (2005) https://doi.org/10.1021/jf0491299

    Article  PubMed  PubMed Central  Google Scholar 

  45. L.M.D. Souza, K.S. Ferreira, J.B.P. Chaves, S.L. Teixeira, Food Sci. Technol. 65, 3, 246–250 (2008)

    Google Scholar 

  46. A.R. Tapre, R.K. Jain, Int. Food Res. J. 21, 2, 447–453 (2014)

    CAS  Google Scholar 

  47. N.N.A.K. Shah, R. Shamsuddin, R.A. Rahman, N.M. Adzahan, Agric. Agric. Sci. Procedia, (2014) https://doi.org/10.1016/j.aaspro.2014.11.007

    Article  Google Scholar 

  48. S. Kumar, Adv. Appl. Sci. Res. 6, 6, 114–124 (2015)

    CAS  Google Scholar 

  49. B.K. Sethi, A. Satapathy, S.K. Tripathy, S. Parida, S.K. Singdevsachan, B.C. Behera, Int. J. Biol. Res. 4, 1, 67–73 (2016)

    Article  Google Scholar 

  50. D.C.Y. Kwok, D.D.S.S. Liang, Biology of papaya. (2019) http://www.biosafety.gov.my/ms-my/pustaka-media/Documents/biologicaldocument-papaya.pdf. Accessed 15 October 2021

  51. V. Farina, I. Tinebra, A. Perrone, G. Sortino, E. Palazzolo, G. Mannino, C. Gentile. Agron. 10, 501 (2020)

    Article  CAS  Google Scholar 

  52. D.R. del Carmen, E.B. Esguerra, W.L. Absulio, M.V. Maunahan, G.D. Masilungan, Phil J. Crop Sci. 37, 2, 75–80 (2012)

    Google Scholar 

  53. V.M. Lieb, P. Esquivel, E.C. Castillo, R. Carle, C.B. Steingass, Food Chem. 248, 238–246 (2018)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Higher Education Malaysia for Fundamental Research Grant Scheme with Project Code: FRGS/1/2019/STG01/USM/02/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Maizura.

Ethics declarations

Conflict of interest

There are no competing interest in this paper, and the authors do not have any possible conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siti Rashima, R., Nurul Anis Jasmin, A., Ong, W.L. et al. Effect of combination pre-treatment conditions on the physicochemical properties, antioxidant activities, and sensory acceptability of Carica papaya L. Eksotika juice. Food Measure 16, 4584–4595 (2022). https://doi.org/10.1007/s11694-022-01500-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01500-4

Keywords

Navigation