Skip to main content

Advertisement

Log in

Biological activities, chromatographic profile and thermal stability of organic and conventional goji berry

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Goji fruits grown in the organic and conventional systems were investigated for phenolic content (TPC), antioxidant activity (AA), carotenoid and ascorbic acid profile, fatty acid composition (FA), and thermal stability. Phenolic extracts and solid samples were analyzed, comparing the use of shaker and ultrasound for Folin-Ciocalteu, Fast Blue BB, and FRAP methods. HPLC and GC-FID were used to determine the profile of carotenoids, ascorbic acid and FA, and oil thermal stability was determined by TG-DTG. Ultrasound showed a higher content of TPC and AA in organic (803.34–7076.43 mg GAE/100 g, 11.45–234.11 mmol TE/100 g) and conventional (763.01–6366.30 mg GAE/100 g, 10.27–117.12 mmol TE/100 g) samples in relation to the shaker. The Folin-Ciocalteu showed higher values (912.42–6350.54 mg/100 g) than the Fast-Blue BB method. The content of TPC and AA were 3–20 times higher in solid samples (Quencher) compared to extracts. (all-E)-lutein and (all-E)-zeaxanthin were the main carotenoids identified. Organic and conventional fruits showed a high vitamin C content (101.83 and 80.46 mg/100 g). Linoleic acid was the main FA, and the ω-6/ω-3 ratio was 0.13 and 0.12. Thermal decomposition for organic and conventional oils started at 130 and 170 °C, respectively. Organic fruits had a higher TPC, AA, (all-E)-zeaxanthin, vitamin C, and linoleic acid than conventional fruits. The results presented in this work show the potential of goji fruits, mainly cultivated in the organic system, as antioxidants and natural functional ingredients. Therefore, goji berry can be considered a food and a promising functional ingredient for developing products in different industrial segments with cosmetic, food, and pharmaceutical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Medina (2011)

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. C.W.I. Haminiuk, G.M. Maciel, M.S.V. Plata-Oviedo, R.M., Peralta, Phenolic compounds in fruits – an overview. Int. J. Food Sci. Technol. 47, 2023–2044 (2012)

    Article  CAS  Google Scholar 

  2. O. Paredes-López, M.L. Cervantes-Ceja, M. Vigna-Pérez, T. Hernández-Pérez, Berries: Improving human health and healthy aging, and promoting quality life - A review. Plant Foods Hum Nutr. 65, 299–308 (2010)

  3. Z. Feng, H. Jia, X. Li, Z. Bai, Z. Liu, L. Sun, Z. Zhu, P. Bucheli, O. Ballévre, J. Wang, J.A., Liu, milk-based wolfberry preparation prevents prenatal stress-induced cognitive impairment of offspring rats, and inhibits oxidative damage and mitochondrial dysfunction in vitro. Neurochem Res. 35(5), 702–711 (2010)

    Article  CAS  PubMed  Google Scholar 

  4. I. Dahech, W. Farah, M. Trigui, A.B. Hssouna, H. Belghith, K.S. Belghith, F.B., Abdallah, Antioxidant and antimicrobial activities of Lycium shawii fruits extract. Int J Biol Macromol. 60, 328–333 (2013)

    Article  CAS  PubMed  Google Scholar 

  5. A.C. Pedro, J.B.B. Maurer, S.F. Zawadzki-Baggio, S. Ávila, G.M. Maciel, C.W.I., Haminiuk, Bioactive compounds of organic goji berry (Lycium barbarum L.) prevents oxidative deterioration of soybean oil. Ind Crops Prod. 112, 90–97 (2018)

    Article  CAS  Google Scholar 

  6. Z. Zhang, X. Liu, T. Wu, J. Liu, X. Zhang, W. Yang, M.J. Goodheart, J.F. Engelhardt, Y. Wang, Selective suppression of cervical cancer Hela cells by 2-O-β-D-glucopyranosyl-L-ascorbic acid isolated from the fruit of Lycium barbarum L. Cell Biol Toxicol. 27, 107–121 (2011)

    Article  PubMed  Google Scholar 

  7. L.M.R. Da Silva, E.A.T. De Figueiredo, N.M.P.S. Ricardo, I.G.P. Vieira, R.W. De Figueiredo, I.M., Brasil, Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chem. 143, 398–404 (2014)

    Article  Google Scholar 

  8. C.H. Lescano, I.P. Oliveira, L.R. Silva, D.S. Baldivia, E.J. Sanjinez-Argandoña, E.J. Arruda, I.C.F. Moraes, Lima, Nutrients content, characterization and oil extraction from Acrocomia aculeata (Jacq.) Lodd. fruits. Afr J Food Sci. 9, 113–119 (2015)

    Article  Google Scholar 

  9. A.C. Pedro, F. Bach, A.P. Stafussa, L.R.A. Menezes, A. Barison, G.M. Maciel, C.W.I., Haminiuk, 1H NMR and Raman spectroscopy of oils and extracts obtained from organic and conventional goji berries: yield, fatty acids, carotenoids and biological activities. Int. J. Food Sci. Technol. 54(1), 282–290 (2019)

    Article  CAS  Google Scholar 

  10. S. Sasidharan, Y. Chen, D. Saravanan, K.M. Sundram, Y.L., Latha, Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr. J. Tradit. Complement. Altern. Med. 8(1), 1–10 (2011)

    CAS  PubMed  Google Scholar 

  11. T. Gomiero, D. Pimentel, M.G. Paoletti, Enviromental impact of different agricultural management pratices convencional vs organic agriculture. Crit. Rev. Plant Sci. 30, 95–124 (2011)

    Article  Google Scholar 

  12. J. Azmir, I.S.M. Zaidul, M.M. Rahman, K.M. Sharif, A. Mohamed, F. Sahena, M.H.A. Jahurul, K. Ghafoor, N.A.N. Norulaini, A.K.M., Omar, Techniques for extraction of bioactive compounds from plant materials: A review. J Food Eng. 117, 426–436 (2013)

    Article  CAS  Google Scholar 

  13. J.A. Teixeira, W.D.G. Nunes, R.P. Fernandes, A.L.C.S. do Nascimento, F.J. Caires, M. Ionashiro, Thermal behavior in oxidative and pyrolysis conditions and characterization of some metal p-aminobenzoate compounds using TG–DTA, EGA and DSC-photovisual system. J Anal Appl Pyrolysis. 128, 261–267 (2017)

    Article  CAS  Google Scholar 

  14. C. Liyana-Pathirana, F. Shahidi, Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem. 93, 47–56 (2005)

    Article  CAS  Google Scholar 

  15. L. Condezo-Hoyos, F. Abderrahim, S.M. Arriba, M.C. González, A novel, micro, rapid and direct assay to assess total antioxidant capacity of solid foods. Talanta 138, 108–116 (2015)

    Article  CAS  PubMed  Google Scholar 

  16. M. Medina, Determination of the total phenolics in juices and superfruits by a novel chemical method. J Funct Foods. 3, 79–87 (2011)

    Article  CAS  Google Scholar 

  17. V.L. Singleton, J.A. Rossi, Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic. 16, 144–158 (1965)

    CAS  Google Scholar 

  18. I.F. Benzie, J.J. Strain, The ferric reducing ability of plasma as a measure of ‘antioxidant power’: The FRAP assay. Anal. Biochem. 239, 70–76 (1996)

    Article  CAS  PubMed  Google Scholar 

  19. M. Nagata, I. Yamashita, Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. J Jpn Soc Food Sci Technol. 39, 925–928 (1992)

    Article  CAS  Google Scholar 

  20. L. Zhao, Z. Qiu, B. Narasimhamoorthy, J.A. Greaves, Development of a rapid, high-throughput method for quantification of zeaxanthin in Chinese wolfberry using HPLC–DAD. Ind Crop Prod 47, 51–57 (2013)

    Article  CAS  Google Scholar 

  21. A.I. Olives-Barba, M. Cámara-Hurtado, M.C. Sánchez-Mata, V. Fernández-Ruiz, M., López-Sáenz-De-Tejada, Application of a UV–vis detection-HPLC method for a rapid determination of lycopene and beta-carotene in vegetables. Food Chem. 95, 328–336 (2006)

    Article  CAS  Google Scholar 

  22. M.C. Sánchez-Mata, R.D. Cabrera-Loera, P. Morales, V. Fernández-Ruiz, M. Cámara, C. Díez-Marqués, M. Pardo-de-Santayana, J., Tardío, Wild vegetables of the Mediterranean area as valuable sources of bioactive compounds. Genet. Resour. Crop Evol. 59(3), 431–443 (2012)

    Article  Google Scholar 

  23. E.G. Bligh, W.J. Dyer, A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 37, 911–917 (1959)

    Article  CAS  PubMed  Google Scholar 

  24. A.O.A.C. Int, Official methods of analysis (Association of Official Analytical Chemists, 2006)

  25. M. Rezaie, R. Farhoosh, M. Iranshahi, A. Sharif, S., Golmohamadzadeh, Ultrasonic-assisted extraction of antioxidative compounds from Bene (Pistacia atlantica subsp. mutica) hull using various solvents of different physicochemical properties. Food Chem. 173, 577–583 (2015)

    Article  CAS  PubMed  Google Scholar 

  26. V.L. Singleton, R. Orthofer, R.S. Lamuela-Raventós, Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 299, 152–178 (1999)

    Article  CAS  Google Scholar 

  27. J. Hempel, C.N. Schädle, J. Sprenger, J. Heller, R. Carle, R.M., Schweiggert, Ultrastructural deposition forms and bioaccessibility of carotenoids and carotenoid esters from goji berries (Lycium barbarum L.). Food Chem. 218, 525–533 (2017)

    Article  CAS  PubMed  Google Scholar 

  28. J. Peñuelas, J. Sardans, R. Ogaya, M., Estiarte, Nutrient stoichiometric relations and biogeochemical niche in coexisting plant species: Effect of simulated climate change, Pol J Ecol. 56, 613–622 (2008)

  29. Q. Zhao, B. Dong, J. Chen, B. Zhao, X. Wang, L. Wang, S. Zha, Y. Wang, J. Zhang, Y. Wang, Effect of drying methods on physicochemical properties and antioxidant activities of wolfberry (Lycium barbarum) polysaccharide. Carbohydr. Polym. 127, 176–181 (2017)

    Article  Google Scholar 

  30. H.K. Wong, S.T. Yong, F.J. Chan, M., Mardhati, Analysis of lutein and zeaxanthin in goji berry (Lycium species) and corn by high performance liquid chromatography. J Sci Technol Tropics. 9, 133–141 (2013)

    Google Scholar 

  31. R.G. Borguini, D.H.M. Bastos, J.J.M. Neto, F.S. Capasso, E.A.F.S., Torres, Antioxidant potential of tomatoes cultivated in organic and conventional systems. Braz Arch Biol Technol. 56, 521–529 (2013)

    Article  Google Scholar 

  32. Y. Liu, Y.Q. Du, J.H. Wang, X.Q. Zha, J.B. Zhang, Structural analysis and antioxidant activities of polysaccharide isolated from Jinqian mushroom. Int J Biol Macromol. 64, 63–68 (2014)

    Article  CAS  PubMed  Google Scholar 

  33. D. Montesano, A. Juan-García, J. Mañes, C. Juan, Chemoprotective effect of carotenoids from Lycium barbarum L. on SH-SY5Y neuroblastoma cells treated with beauvericin. Food Chem. Toxicol. 141, 111414 (2020)

    Article  CAS  PubMed  Google Scholar 

  34. J.H. Nelis, P.A. Deleenheer, 1991. Microbial sources of carotenoid pigments used in foods and feeds. J App Bacteriol. 70, 181–191 (1991)

  35. S. Li, N. Liu, L. Lin, E.D. Li, J.D. Sun, P.K. Li, Macular pigment and serum zeaxanthin levels with Goji berry supplement in early age-related macular degeneration. Int J Ophthalmol. 11(6), 970–975 ( (2018). ), )

    PubMed  PubMed Central  Google Scholar 

  36. A. Wojdyło, P. Nowicka, P. Bąbelewski, Phenolic and carotenoid profile of new goji cultivars and their anti-hyperglycemic, anti-aging and antioxidant properties. J Funct Foods 48, 632–642 (2018)

    Article  Google Scholar 

  37. S. Damodaran, K.L. Parkin, O.R. Fennema, Química de Alimentos de Fennema, 4.ed. (Artmed, Porto Alegre, 2010), 900p

    Google Scholar 

  38. D. Donno, G.L. Beccaro, M.G. Mellano, A.K. Cerutti, G., Bounous, Goji berry fruit (Lycium spp.): antioxidant compound fingerprint and bioactivity evaluation. J Funct Foods. 18, 1070–1085 (2015)

    Article  CAS  Google Scholar 

  39. J. Kulaitienė, N. Vaitkevičienė, E. Jarienė, J. Černiauskienė, M. Jeznach, A. Paulauskienė, Concentrations of minerals, soluble solids, vitamin C, carotenoids and toxigenic elements in organic goji berries (Lycium barbarum L.) cultivated in Lithuania. Biol. Agric. Hortic. 36(2), 130–140 (2020)

    Article  Google Scholar 

  40. P.B. Pertuzatti, M. Sganzerla, A.C. Jacques, M.T. Barcia, R.C. Zambiazi, Carotenoids, tocopherols and ascorbic acid content in yellow passion fruit (Passiflora edulis) grown under different cultivation systems. LWT - Food Sci Technol. 64, 259–263 (2015)

  41. M.I. Genovese, M.S. Pinto, A.E.S.S. Gonçalves, F.M., Lajolo, Bioactive compounds and antioxidant capacity of exotic fruits and commercial frozen pulps from Brazil, Food Sci Technol Int. 14, 207–214 (2008)

  42. Z. Endes, N. Uslu, M.M. Özcan, F. Er, Physico-chemical properties, fatty acid composition and mineral contents of goji berry (Lycium barbarum L.) fruit. J Agroaliment Processes Technol. 21, 36–40 (2015)

    CAS  Google Scholar 

  43. F. Blasi, D. Montesano, M.S. Simonetti, L. Cossignani, A simple and rapid extraction method to evaluate the fatty acid composition and nutritional value of goji berry lipid. Food Anal. Methods 10, 970–979 (2017)

    Article  Google Scholar 

  44. P. Skenderidis, D. Lampakis, I. Giavasis, S. Leontopoulos, K. Petrotos, C. Hadjichristodoulou, A., Tsakalof, Chemical properties, fatty-acid composition, and antioxidant activity of goji berry (Lycium barbarum L. and Lycium chinense Mill.) fruits. Antioxidants 8(3), 60 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  45. WHO. World Health Organization. Fats and Fatty Acids in Human Nutrition; World Health Organization: Geneva, Switzerland, 2008; Vol. 91, ISBN 9789251067338

  46. T. Ilić, M. Dodevska, M. Marčetić, D. Božić, I. Kodranov, B., Vidović, Chemical characterization, antioxidant and antimicrobial properties of goji berries cultivated in Serbia. Foods 9(11), 1614 (2020)

    Article  PubMed Central  Google Scholar 

  47. B. Kulczyński, A., Gramza-Michałowska, Goji Berry (Lycium barbarum): Composition and Health Effects – a Review. Polish J Food Nutr Sci. 66(2), 67–75 (2016)

    Article  Google Scholar 

  48. C. Dorni, P. Sharma, G. Saikia, T. Longvah, Fatty acid profile of edible oils and fats consumed in India. Food Chem. 238, 9–15 (2018)

    Article  CAS  PubMed  Google Scholar 

  49. D.B. Konuskan, M. Arslan, A. Oksuz, Physicochemical properties of cold-pressed sunflower, peanut, rapeseed, mustard and olive oils grown in the Eastern Mediterranean region. Saudi. J. Biol. Sci. 26(2), 340–344 (2019)

    Article  CAS  PubMed  Google Scholar 

  50. H. Coklar, M. Akbulut, Bioactive compounds, antioxidant activity and some physicochemical properties of the seed and seed-oil of Mahonia aquifolium berries. J Food Meas Charact. 13(2), 1269–1278 (2019)

    Article  Google Scholar 

  51. M. Zorzi, F. Gai, C. Medana,, R. Aigotti, S. Morello, P.G. Peiretti, Bioactive compounds and antioxidant capacity of small berries. Foods 9(5), 623 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  52. M.S. Macoris, R. De Marchi, N.S. Janzantti, M. Monteiro, The influence of ripening stage and cultivation system on the total antioxidant activity and total phenolic compounds of yellow passion fruit pulp. J Sci Food Agricult. 92, 1886–1891 (2012)

    Article  CAS  Google Scholar 

  53. M.G. Chacón-Fernández, M.R. Hernández-Medel, M. Bernal-González, M.C. Durán-Domínguez-de-Bazúa, J.A., Solís-Fuentes, Composition, properties, stability and thermal behavior of tamarind (Tamarindus indica) seed oil. Grasas Aceites 70(4), 333 (2019)

    Article  Google Scholar 

  54. S. Şahin, Evaluation of stability against oxidation in edible fats and oils. J Food Sci Nutr Res 2, 283–297 (2019)

    Article  Google Scholar 

  55. S. Niu, Y. Zhou, H. Yu, C. Lu, K. Han, Investigation on thermal degradation properties of oleic acid and its methyl and ethyl esters through TG-FTIR. Energy Convers Manag. 149, 495–504 (2017)

    Article  CAS  Google Scholar 

  56. B.S. Santos, C.S. Macêdo, L.R.V. da., C.e.F. Conceição, O.V.M. Costa, A.L.G. de Júnior, S.C. da Souza, S., Lannes, Evaluation of quality parameters and chromatographic, spectroscopic, and thermogravimetric profile of Patauá oil (Oenocarpus bataua). Food Sci Technol. 40, 76–82 (2020)

    Article  Google Scholar 

  57. R.H.H. Pinto, E.G.O. Menezes, L.C. Freitas, E.H. de A., Andrade, R.M. Ribeiro-Costa, J.O.C.S. Júnior, R.N.C., Junior, Supercritical CO2 extraction of uxi (Endopleura uchi) oil: Global yield isotherms, fatty acid profile, functional quality and thermal stability. J Supercrit Fluid. 165, 104932 (2020)

    Article  CAS  Google Scholar 

  58. J. Kapusniak, P. Siemion, Thermal reactions of starch with long-chain unsaturated fatty acids. Part 2. Linoleic acid. J Food Eng 78(1), 323–332 (2007)

    Article  CAS  Google Scholar 

  59. N. Agrawal, S. Munjal, M.Z. Ansari, N., Khare, Superhydrophobic palmitic acid modified ZnO nanoparticles. Ceram. Int. 43(16), 14271–14276 (2017)

    Article  CAS  Google Scholar 

  60. J.C.M. da Silva, C.L. Nicolau, M.R.P. Cabral, E.R. Costa, J.M. Stropa, C.A.A. Silva, D.R. Scharf, E.L. Simionatto, A.R. Fiorucci, L.C.Sde Oliveira, E., Simionatto, Thermal and oxidative stabilities of binary blends of esters from soybean oil and non-edible oils (Aleurites moluccanus, Terminalia catappa, and Scheelea phalerata). Fuel, 262, 116644 (2020)

  61. A.C. Pedro, M.C. Sánchez-Mata, M.L. Pérez-Rodríguez, M. Cámara, J.L. López-Colón, F. Bach, M. Bellettini, C.W.I. Haminiuk, Qualitative and nutritional comparison of goji berry fruits produced in organic and conventional systems. Sci. Hortic. 257, 108660 (2019)

    Article  CAS  Google Scholar 

  62. M. Juhász, Y. Kitahara, S. Takahashi, T. Fujii, Thermal stability of vitamin C: Thermogravimetric analysis and use of total ion monitoring chromatograms. J Pharm Biom Anal. 59, 190–193 (2012)

    Article  Google Scholar 

  63. S.Y. Reda, Evaluation of antioxidants stability by thermal analysis and its protective effect in heated edible vegetable oil. Food Sci Technol. 31, 475–480 (2011)

    Article  Google Scholar 

  64. D. Micic, S. Ostojic, M. Simonovic, B. Simonovic, Thermal behavior of raspberry and blackberry seeds oils followed by DSC. J Process Energy Agricult. 5, 204–206 (2014)

    Google Scholar 

  65. O.V. Santos, N.C.F. Correa, R.C. Junior, C.E.F. da., Costa, J. de F.C., Moraes, S.C.da S., Lannes, Quality parameters and thermogravimetric and oxidative profile of Muruci oil (Byrsonima crassifolia L.) obtained by supercritical CO2. Food Sci Technol. 38, 172–179 (2018)

Download references

Acknowledgements

The authors would like to thank the following fomenting agents for financial support: CAPES/PROAP, Universidade Federal do Paraná (UFPR), ALIMNOVA-UCM research group and LOU-Art. 83 project ref: UCM 317/2020, and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Cristina Pedro.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 241.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedro, A.C., Pérez-Rodríguez, M.L., Sánchez-Mata, MC. et al. Biological activities, chromatographic profile and thermal stability of organic and conventional goji berry. Food Measure 16, 1263–1273 (2022). https://doi.org/10.1007/s11694-021-01274-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01274-1

Keywords