Abstract
Goji fruits grown in the organic and conventional systems were investigated for phenolic content (TPC), antioxidant activity (AA), carotenoid and ascorbic acid profile, fatty acid composition (FA), and thermal stability. Phenolic extracts and solid samples were analyzed, comparing the use of shaker and ultrasound for Folin-Ciocalteu, Fast Blue BB, and FRAP methods. HPLC and GC-FID were used to determine the profile of carotenoids, ascorbic acid and FA, and oil thermal stability was determined by TG-DTG. Ultrasound showed a higher content of TPC and AA in organic (803.34–7076.43 mg GAE/100 g, 11.45–234.11 mmol TE/100 g) and conventional (763.01–6366.30 mg GAE/100 g, 10.27–117.12 mmol TE/100 g) samples in relation to the shaker. The Folin-Ciocalteu showed higher values (912.42–6350.54 mg/100 g) than the Fast-Blue BB method. The content of TPC and AA were 3–20 times higher in solid samples (Quencher) compared to extracts. (all-E)-lutein and (all-E)-zeaxanthin were the main carotenoids identified. Organic and conventional fruits showed a high vitamin C content (101.83 and 80.46 mg/100 g). Linoleic acid was the main FA, and the ω-6/ω-3 ratio was 0.13 and 0.12. Thermal decomposition for organic and conventional oils started at 130 and 170 °C, respectively. Organic fruits had a higher TPC, AA, (all-E)-zeaxanthin, vitamin C, and linoleic acid than conventional fruits. The results presented in this work show the potential of goji fruits, mainly cultivated in the organic system, as antioxidants and natural functional ingredients. Therefore, goji berry can be considered a food and a promising functional ingredient for developing products in different industrial segments with cosmetic, food, and pharmaceutical purposes.

Source: Medina (2011)
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
C.W.I. Haminiuk, G.M. Maciel, M.S.V. Plata-Oviedo, R.M., Peralta, Phenolic compounds in fruits – an overview. Int. J. Food Sci. Technol. 47, 2023–2044 (2012)
O. Paredes-López, M.L. Cervantes-Ceja, M. Vigna-Pérez, T. Hernández-Pérez, Berries: Improving human health and healthy aging, and promoting quality life - A review. Plant Foods Hum Nutr. 65, 299–308 (2010)
Z. Feng, H. Jia, X. Li, Z. Bai, Z. Liu, L. Sun, Z. Zhu, P. Bucheli, O. Ballévre, J. Wang, J.A., Liu, milk-based wolfberry preparation prevents prenatal stress-induced cognitive impairment of offspring rats, and inhibits oxidative damage and mitochondrial dysfunction in vitro. Neurochem Res. 35(5), 702–711 (2010)
I. Dahech, W. Farah, M. Trigui, A.B. Hssouna, H. Belghith, K.S. Belghith, F.B., Abdallah, Antioxidant and antimicrobial activities of Lycium shawii fruits extract. Int J Biol Macromol. 60, 328–333 (2013)
A.C. Pedro, J.B.B. Maurer, S.F. Zawadzki-Baggio, S. Ávila, G.M. Maciel, C.W.I., Haminiuk, Bioactive compounds of organic goji berry (Lycium barbarum L.) prevents oxidative deterioration of soybean oil. Ind Crops Prod. 112, 90–97 (2018)
Z. Zhang, X. Liu, T. Wu, J. Liu, X. Zhang, W. Yang, M.J. Goodheart, J.F. Engelhardt, Y. Wang, Selective suppression of cervical cancer Hela cells by 2-O-β-D-glucopyranosyl-L-ascorbic acid isolated from the fruit of Lycium barbarum L. Cell Biol Toxicol. 27, 107–121 (2011)
L.M.R. Da Silva, E.A.T. De Figueiredo, N.M.P.S. Ricardo, I.G.P. Vieira, R.W. De Figueiredo, I.M., Brasil, Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chem. 143, 398–404 (2014)
C.H. Lescano, I.P. Oliveira, L.R. Silva, D.S. Baldivia, E.J. Sanjinez-Argandoña, E.J. Arruda, I.C.F. Moraes, Lima, Nutrients content, characterization and oil extraction from Acrocomia aculeata (Jacq.) Lodd. fruits. Afr J Food Sci. 9, 113–119 (2015)
A.C. Pedro, F. Bach, A.P. Stafussa, L.R.A. Menezes, A. Barison, G.M. Maciel, C.W.I., Haminiuk, 1H NMR and Raman spectroscopy of oils and extracts obtained from organic and conventional goji berries: yield, fatty acids, carotenoids and biological activities. Int. J. Food Sci. Technol. 54(1), 282–290 (2019)
S. Sasidharan, Y. Chen, D. Saravanan, K.M. Sundram, Y.L., Latha, Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr. J. Tradit. Complement. Altern. Med. 8(1), 1–10 (2011)
T. Gomiero, D. Pimentel, M.G. Paoletti, Enviromental impact of different agricultural management pratices convencional vs organic agriculture. Crit. Rev. Plant Sci. 30, 95–124 (2011)
J. Azmir, I.S.M. Zaidul, M.M. Rahman, K.M. Sharif, A. Mohamed, F. Sahena, M.H.A. Jahurul, K. Ghafoor, N.A.N. Norulaini, A.K.M., Omar, Techniques for extraction of bioactive compounds from plant materials: A review. J Food Eng. 117, 426–436 (2013)
J.A. Teixeira, W.D.G. Nunes, R.P. Fernandes, A.L.C.S. do Nascimento, F.J. Caires, M. Ionashiro, Thermal behavior in oxidative and pyrolysis conditions and characterization of some metal p-aminobenzoate compounds using TG–DTA, EGA and DSC-photovisual system. J Anal Appl Pyrolysis. 128, 261–267 (2017)
C. Liyana-Pathirana, F. Shahidi, Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem. 93, 47–56 (2005)
L. Condezo-Hoyos, F. Abderrahim, S.M. Arriba, M.C. González, A novel, micro, rapid and direct assay to assess total antioxidant capacity of solid foods. Talanta 138, 108–116 (2015)
M. Medina, Determination of the total phenolics in juices and superfruits by a novel chemical method. J Funct Foods. 3, 79–87 (2011)
V.L. Singleton, J.A. Rossi, Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic. 16, 144–158 (1965)
I.F. Benzie, J.J. Strain, The ferric reducing ability of plasma as a measure of ‘antioxidant power’: The FRAP assay. Anal. Biochem. 239, 70–76 (1996)
M. Nagata, I. Yamashita, Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. J Jpn Soc Food Sci Technol. 39, 925–928 (1992)
L. Zhao, Z. Qiu, B. Narasimhamoorthy, J.A. Greaves, Development of a rapid, high-throughput method for quantification of zeaxanthin in Chinese wolfberry using HPLC–DAD. Ind Crop Prod 47, 51–57 (2013)
A.I. Olives-Barba, M. Cámara-Hurtado, M.C. Sánchez-Mata, V. Fernández-Ruiz, M., López-Sáenz-De-Tejada, Application of a UV–vis detection-HPLC method for a rapid determination of lycopene and beta-carotene in vegetables. Food Chem. 95, 328–336 (2006)
M.C. Sánchez-Mata, R.D. Cabrera-Loera, P. Morales, V. Fernández-Ruiz, M. Cámara, C. Díez-Marqués, M. Pardo-de-Santayana, J., Tardío, Wild vegetables of the Mediterranean area as valuable sources of bioactive compounds. Genet. Resour. Crop Evol. 59(3), 431–443 (2012)
E.G. Bligh, W.J. Dyer, A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 37, 911–917 (1959)
A.O.A.C. Int, Official methods of analysis (Association of Official Analytical Chemists, 2006)
M. Rezaie, R. Farhoosh, M. Iranshahi, A. Sharif, S., Golmohamadzadeh, Ultrasonic-assisted extraction of antioxidative compounds from Bene (Pistacia atlantica subsp. mutica) hull using various solvents of different physicochemical properties. Food Chem. 173, 577–583 (2015)
V.L. Singleton, R. Orthofer, R.S. Lamuela-Raventós, Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 299, 152–178 (1999)
J. Hempel, C.N. Schädle, J. Sprenger, J. Heller, R. Carle, R.M., Schweiggert, Ultrastructural deposition forms and bioaccessibility of carotenoids and carotenoid esters from goji berries (Lycium barbarum L.). Food Chem. 218, 525–533 (2017)
J. Peñuelas, J. Sardans, R. Ogaya, M., Estiarte, Nutrient stoichiometric relations and biogeochemical niche in coexisting plant species: Effect of simulated climate change, Pol J Ecol. 56, 613–622 (2008)
Q. Zhao, B. Dong, J. Chen, B. Zhao, X. Wang, L. Wang, S. Zha, Y. Wang, J. Zhang, Y. Wang, Effect of drying methods on physicochemical properties and antioxidant activities of wolfberry (Lycium barbarum) polysaccharide. Carbohydr. Polym. 127, 176–181 (2017)
H.K. Wong, S.T. Yong, F.J. Chan, M., Mardhati, Analysis of lutein and zeaxanthin in goji berry (Lycium species) and corn by high performance liquid chromatography. J Sci Technol Tropics. 9, 133–141 (2013)
R.G. Borguini, D.H.M. Bastos, J.J.M. Neto, F.S. Capasso, E.A.F.S., Torres, Antioxidant potential of tomatoes cultivated in organic and conventional systems. Braz Arch Biol Technol. 56, 521–529 (2013)
Y. Liu, Y.Q. Du, J.H. Wang, X.Q. Zha, J.B. Zhang, Structural analysis and antioxidant activities of polysaccharide isolated from Jinqian mushroom. Int J Biol Macromol. 64, 63–68 (2014)
D. Montesano, A. Juan-García, J. Mañes, C. Juan, Chemoprotective effect of carotenoids from Lycium barbarum L. on SH-SY5Y neuroblastoma cells treated with beauvericin. Food Chem. Toxicol. 141, 111414 (2020)
J.H. Nelis, P.A. Deleenheer, 1991. Microbial sources of carotenoid pigments used in foods and feeds. J App Bacteriol. 70, 181–191 (1991)
S. Li, N. Liu, L. Lin, E.D. Li, J.D. Sun, P.K. Li, Macular pigment and serum zeaxanthin levels with Goji berry supplement in early age-related macular degeneration. Int J Ophthalmol. 11(6), 970–975 ( (2018). ), )
A. Wojdyło, P. Nowicka, P. Bąbelewski, Phenolic and carotenoid profile of new goji cultivars and their anti-hyperglycemic, anti-aging and antioxidant properties. J Funct Foods 48, 632–642 (2018)
S. Damodaran, K.L. Parkin, O.R. Fennema, Química de Alimentos de Fennema, 4.ed. (Artmed, Porto Alegre, 2010), 900p
D. Donno, G.L. Beccaro, M.G. Mellano, A.K. Cerutti, G., Bounous, Goji berry fruit (Lycium spp.): antioxidant compound fingerprint and bioactivity evaluation. J Funct Foods. 18, 1070–1085 (2015)
J. Kulaitienė, N. Vaitkevičienė, E. Jarienė, J. Černiauskienė, M. Jeznach, A. Paulauskienė, Concentrations of minerals, soluble solids, vitamin C, carotenoids and toxigenic elements in organic goji berries (Lycium barbarum L.) cultivated in Lithuania. Biol. Agric. Hortic. 36(2), 130–140 (2020)
P.B. Pertuzatti, M. Sganzerla, A.C. Jacques, M.T. Barcia, R.C. Zambiazi, Carotenoids, tocopherols and ascorbic acid content in yellow passion fruit (Passiflora edulis) grown under different cultivation systems. LWT - Food Sci Technol. 64, 259–263 (2015)
M.I. Genovese, M.S. Pinto, A.E.S.S. Gonçalves, F.M., Lajolo, Bioactive compounds and antioxidant capacity of exotic fruits and commercial frozen pulps from Brazil, Food Sci Technol Int. 14, 207–214 (2008)
Z. Endes, N. Uslu, M.M. Özcan, F. Er, Physico-chemical properties, fatty acid composition and mineral contents of goji berry (Lycium barbarum L.) fruit. J Agroaliment Processes Technol. 21, 36–40 (2015)
F. Blasi, D. Montesano, M.S. Simonetti, L. Cossignani, A simple and rapid extraction method to evaluate the fatty acid composition and nutritional value of goji berry lipid. Food Anal. Methods 10, 970–979 (2017)
P. Skenderidis, D. Lampakis, I. Giavasis, S. Leontopoulos, K. Petrotos, C. Hadjichristodoulou, A., Tsakalof, Chemical properties, fatty-acid composition, and antioxidant activity of goji berry (Lycium barbarum L. and Lycium chinense Mill.) fruits. Antioxidants 8(3), 60 (2019)
WHO. World Health Organization. Fats and Fatty Acids in Human Nutrition; World Health Organization: Geneva, Switzerland, 2008; Vol. 91, ISBN 9789251067338
T. Ilić, M. Dodevska, M. Marčetić, D. Božić, I. Kodranov, B., Vidović, Chemical characterization, antioxidant and antimicrobial properties of goji berries cultivated in Serbia. Foods 9(11), 1614 (2020)
B. Kulczyński, A., Gramza-Michałowska, Goji Berry (Lycium barbarum): Composition and Health Effects – a Review. Polish J Food Nutr Sci. 66(2), 67–75 (2016)
C. Dorni, P. Sharma, G. Saikia, T. Longvah, Fatty acid profile of edible oils and fats consumed in India. Food Chem. 238, 9–15 (2018)
D.B. Konuskan, M. Arslan, A. Oksuz, Physicochemical properties of cold-pressed sunflower, peanut, rapeseed, mustard and olive oils grown in the Eastern Mediterranean region. Saudi. J. Biol. Sci. 26(2), 340–344 (2019)
H. Coklar, M. Akbulut, Bioactive compounds, antioxidant activity and some physicochemical properties of the seed and seed-oil of Mahonia aquifolium berries. J Food Meas Charact. 13(2), 1269–1278 (2019)
M. Zorzi, F. Gai, C. Medana,, R. Aigotti, S. Morello, P.G. Peiretti, Bioactive compounds and antioxidant capacity of small berries. Foods 9(5), 623 (2020)
M.S. Macoris, R. De Marchi, N.S. Janzantti, M. Monteiro, The influence of ripening stage and cultivation system on the total antioxidant activity and total phenolic compounds of yellow passion fruit pulp. J Sci Food Agricult. 92, 1886–1891 (2012)
M.G. Chacón-Fernández, M.R. Hernández-Medel, M. Bernal-González, M.C. Durán-Domínguez-de-Bazúa, J.A., Solís-Fuentes, Composition, properties, stability and thermal behavior of tamarind (Tamarindus indica) seed oil. Grasas Aceites 70(4), 333 (2019)
S. Şahin, Evaluation of stability against oxidation in edible fats and oils. J Food Sci Nutr Res 2, 283–297 (2019)
S. Niu, Y. Zhou, H. Yu, C. Lu, K. Han, Investigation on thermal degradation properties of oleic acid and its methyl and ethyl esters through TG-FTIR. Energy Convers Manag. 149, 495–504 (2017)
B.S. Santos, C.S. Macêdo, L.R.V. da., C.e.F. Conceição, O.V.M. Costa, A.L.G. de Júnior, S.C. da Souza, S., Lannes, Evaluation of quality parameters and chromatographic, spectroscopic, and thermogravimetric profile of Patauá oil (Oenocarpus bataua). Food Sci Technol. 40, 76–82 (2020)
R.H.H. Pinto, E.G.O. Menezes, L.C. Freitas, E.H. de A., Andrade, R.M. Ribeiro-Costa, J.O.C.S. Júnior, R.N.C., Junior, Supercritical CO2 extraction of uxi (Endopleura uchi) oil: Global yield isotherms, fatty acid profile, functional quality and thermal stability. J Supercrit Fluid. 165, 104932 (2020)
J. Kapusniak, P. Siemion, Thermal reactions of starch with long-chain unsaturated fatty acids. Part 2. Linoleic acid. J Food Eng 78(1), 323–332 (2007)
N. Agrawal, S. Munjal, M.Z. Ansari, N., Khare, Superhydrophobic palmitic acid modified ZnO nanoparticles. Ceram. Int. 43(16), 14271–14276 (2017)
J.C.M. da Silva, C.L. Nicolau, M.R.P. Cabral, E.R. Costa, J.M. Stropa, C.A.A. Silva, D.R. Scharf, E.L. Simionatto, A.R. Fiorucci, L.C.Sde Oliveira, E., Simionatto, Thermal and oxidative stabilities of binary blends of esters from soybean oil and non-edible oils (Aleurites moluccanus, Terminalia catappa, and Scheelea phalerata). Fuel, 262, 116644 (2020)
A.C. Pedro, M.C. Sánchez-Mata, M.L. Pérez-Rodríguez, M. Cámara, J.L. López-Colón, F. Bach, M. Bellettini, C.W.I. Haminiuk, Qualitative and nutritional comparison of goji berry fruits produced in organic and conventional systems. Sci. Hortic. 257, 108660 (2019)
M. Juhász, Y. Kitahara, S. Takahashi, T. Fujii, Thermal stability of vitamin C: Thermogravimetric analysis and use of total ion monitoring chromatograms. J Pharm Biom Anal. 59, 190–193 (2012)
S.Y. Reda, Evaluation of antioxidants stability by thermal analysis and its protective effect in heated edible vegetable oil. Food Sci Technol. 31, 475–480 (2011)
D. Micic, S. Ostojic, M. Simonovic, B. Simonovic, Thermal behavior of raspberry and blackberry seeds oils followed by DSC. J Process Energy Agricult. 5, 204–206 (2014)
O.V. Santos, N.C.F. Correa, R.C. Junior, C.E.F. da., Costa, J. de F.C., Moraes, S.C.da S., Lannes, Quality parameters and thermogravimetric and oxidative profile of Muruci oil (Byrsonima crassifolia L.) obtained by supercritical CO2. Food Sci Technol. 38, 172–179 (2018)
Acknowledgements
The authors would like to thank the following fomenting agents for financial support: CAPES/PROAP, Universidade Federal do Paraná (UFPR), ALIMNOVA-UCM research group and LOU-Art. 83 project ref: UCM 317/2020, and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Pedro, A.C., Pérez-Rodríguez, M.L., Sánchez-Mata, MC. et al. Biological activities, chromatographic profile and thermal stability of organic and conventional goji berry. Food Measure 16, 1263–1273 (2022). https://doi.org/10.1007/s11694-021-01274-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11694-021-01274-1


