Skip to main content
Log in

Antibacterial and antioxidant activity of sour cherry kernel oil (Cerasus vulgaris Miller) against some food-borne microorganisms

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

A Correction to this article was published on 22 October 2021

This article has been updated

Abstract

The kernel of cherry, which is obtained from the waste of cherry fruit processing, is classified among non-consumable wastes. In the present study, kernel oil of sour cherry (Cerasus vulgaris Miller) was extracted using cold pressing method and its chemical composition and antibacterial properties against Gram-positive (i.e. Staphylococcus aureus, and Listeria monocytogenes), as well as Gram-negative bacteria (i.e. Escherichia coli and Salmonella typhimurium) were evaluated using disc diffusion and agar well diffusion methods at concentrations of 10 μg/mL, 100 μg/mL, 300 μg/mL, 500 μg/mL, and 800 μg/mL for 24 h and 48 h. The results showed kernel oil of Prunus cerasus L. was rich in polyphenols, flavonoid, anthocyanin, and tocopherol. The kernel oil of Prunus cerasus L. inhibited the growth of all microbial species tested especially Gram-positive strains. The most sensitive microorganism (lowest MIC) among the studied microorganisms was Listeria monocytogenes (MIC: 100 mg/mL). Moreover, Listeria monocytogenes had the largest growth inhibition zone. With increasing oil concentration, the growth inhibition zone increased. Evaluation of the antimicrobial effect, based on the study time (24 h and 48 h), didn’t reveal any significantly difference (p < 0.05). Antibacterial properties of Cerasus vulgaris Miller kernel oil were less than those of gentamicin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

References

  1. G. Sodeifian, S.A. Sajadian, Antioxidant capacity, physicochemical properties, thermal behavior, and oxidative stability of nectarine (Prunus persica var. nucipersica) kernel oil. J Food Process Preserv (2021). https://doi.org/10.1111/jfpp.15198

    Article  Google Scholar 

  2. M. Moghadam, M. Salami, M. Mohammadian, Z. Emam-Djomeh, Development and characterization of pH-sensitive and antioxidant edible films based on mung bean protein enriched with Echium amoenum anthocyanins. J Food Meas Charact (2021). https://doi.org/10.1007/s11694-021-00872-3

    Article  Google Scholar 

  3. G. Ghelichkhani, M.H. Modaresi, L. Rashidi, N. Shariatifar, M. Homapour, M. Arabameri, Effect of the spray and freeze dryers on the bioactive compounds of olive leaf aqueous extract by chemometrics of HCA and PCA. J Food Meas Charact 13(4), 2751–2763 (2019)

    Article  Google Scholar 

  4. M.S. Daneshzadeh, H. Abbaspour, L. Amjad, A.M. Nafchi, An investigation on phytochemical, antioxidant and antibacterial properties of extract from Eryngium billardieri F. Delaroche. J Food Meas Charact (2019). https://doi.org/10.1007/s11694-019-00317-y

    Article  Google Scholar 

  5. S. Paidari, S.A. Ibrahim, Potential application of gold nanoparticles in food packaging: a mini review. Gold Bull (2021). https://doi.org/10.1007/s13404-021-00290-9

    Article  Google Scholar 

  6. S. Jafarzadeh, S.M. Jafari, A. Salehabadi, A.M. Nafchi, U.S. Uthaya, H.A. Khalil, Biodegradable green packaging with antimicrobial functions based on the bioactive compounds from tropical plants and their by-products. Trend Food Sci Technol (2020). https://doi.org/10.1016/j.tifs.2020.04.017

    Article  Google Scholar 

  7. A.T. Jan, M.R. Kamli, I. Murtaza, J.B. Singh, A. Ali, Q. Haq, Dietary flavonoid quercetin and associated health benefits—an overview. Food Rev Int 26, 302–317 (2010)

    Article  CAS  Google Scholar 

  8. D. Mousavian, A.M. Nafchi, L. Nouri, A. Abedinia, Physicomechanical properties, release kinetics, and antimicrobial activity of activated low-density polyethylene and orientated polypropylene films by Thyme essential oil active component. J Food Meas Charact 15(1), 883–891 (2021)

    Article  Google Scholar 

  9. H.H. Wijngaard, C. Rößle, N. Brunton, A survey of Irish fruit and vegetable waste and by-products as a source of polyphenolic antioxidants. Food Chem 116(1), 202–207 (2009)

    Article  CAS  Google Scholar 

  10. Y. Hong, Z. Wang, C.J. Barrow, F.R. Dunshea, H.A. Suleria, High-throughput screening and characterization of phenolic compounds in stone fruits waste by LC-ESI-QTOF-MS/MS and their potential antioxidant activities. Antioxidants 10(2), 234 (2021)

    Article  CAS  Google Scholar 

  11. L. Rashidi, Z. Gholami, S. Nanvazadeh, Z. Shabani, Rapid method for extracting and quantifying synthetic antioxidants in all edible fats and oils. Food Analyt Method 9(9), 2682–2690 (2016)

    Article  Google Scholar 

  12. S. Norouzi, A. Fadavi, H. Darvishi, The ohmic and conventional heating methods in concentration of sour cherry juice: Quality and engineering factors. J Food Eng 291, 110242 (2021)

    Article  CAS  Google Scholar 

  13. B.L. Koop, M.A. Knapp, M. Di Luccio, V.Z. Pinto, L. Tormen, G.A. Valencia, A.R. Monteiro, Bioactive Compounds from Jambolan (Syzygium cumini (L.)) Extract Concentrated by Ultra-and Nanofiltration: a Potential Natural Antioxidant for Food. Plant Foods Hum Nutr (2021). https://doi.org/10.1007/s11130-021-00878-8

    Article  PubMed  Google Scholar 

  14. P. Kashyap, C.S. Riar, N. Jindal, Optimization of ultrasound assisted extraction of polyphenols from Meghalayan cherry fruit (Prunus nepalensis) using response surface methodology (RSM) and artificial neural network (ANN) approach. J Food Meas Charact 15(1), 119–133 (2021)

    Article  Google Scholar 

  15. B. Naderi, Y. Maghsoudlou, M. Aminifar, M. Ghorbani, L. Rashidi, Investigation on the changes in color parameters and turbidity of cornelian cherry (cornus mass L.) produced by microwave and conventional heating. Nutr Food Sci Res 2(4), 39–46 (2015)

    CAS  Google Scholar 

  16. G. Toydemir, E. Capanoglu, M.V.G. Roldan, R.C. de Vos, D. Boyacioglu, R.D. Hall, J. Beekwilder, Industrial processing effects on phenolic compounds in sour cherry (Prunus cerasus L.) fruit. Food Res Int 53(1), 218–225 (2013)

    Article  CAS  Google Scholar 

  17. C. Piccirillo, S. Demiray, A.S. Ferreira, M. Pintado, P.M. Castro, Chemical composition and antibacterial properties of stem and leaf extracts from Ginja cherry plant. Indust Crops Prod 43, 562–569 (2013)

    Article  CAS  Google Scholar 

  18. C. Yılmaz, V. Gökmen, Compositional characteristics of sour cherry kernel and its oil as influenced by different extraction and roasting conditions. Indust Crops Prod 49, 130–135 (2013)

    Article  Google Scholar 

  19. K. Ghasemi, Y. Ghasemi, A. Ehteshamnia, S.M. Nabavi, S.F. Nabavi, M.A. Ebrahimzadeh, F. Pourmorad, Influence of environmental factors on antioxidant activity, phenol and flavonoids contents of walnut (Juglans regia L.) green husks. J Med Plants Res 5(7), 1128–1133 (2011)

    CAS  Google Scholar 

  20. S. Proietti, S. Moscatello, F. Villani, F. Mecucci, R.P. Walker, F. Famiani, A. Battistelli, Quality and nutritional compounds of Prunus cerasus L. var. austera fruit grown in central Italy. HortScience 54(6), 1005–1012 (2019)

    Article  CAS  Google Scholar 

  21. A. Sokół-Łętowska, A.Z. Kucharska, G. Hodun, M. Gołba, Chemical Composition of 21 Cultivars of Sour Cherry (Prunus cerasus) Fruit Cultivated in Poland. Molecules 25(19), 4587 (2020)

    Article  Google Scholar 

  22. Q. Chen, Y. Yin, C. Zhu, G. Yu, Toxicological assessment of Chinese cherry (Cerasus pseudocerasus L.) seed oil. Food Sci Technol Res 20(1), 101–108 (2014)

    Article  CAS  Google Scholar 

  23. N. Kutlu, A. Isci, O. Sakiyan, A.E. Yilmaz, Extraction of phenolic compounds from cornelian cherry (Cornus mas L.) using microwave and ohmic heating assisted microwave methods. Food Bioprocess Technol 14(4), 650–664 (2021)

    Article  CAS  Google Scholar 

  24. H. Hong, A. Phan, T. O’Hare, Temperature and maturity stages affect anthocyanin development and phenolic and sugar content of purple-pericarp supersweet sweetcorn during storage. J Agric Food Chem 69(3), 922–931 (2021)

    Article  CAS  Google Scholar 

  25. E. Sipeniece, I. Mišina, Y. Qian, A. Grygier, N. Sobieszczańska, P.K. Sahu, M. Rudzińska, K.S. Patel, P. Górnaś, Fatty acid profile and squalene, tocopherol, carotenoid, sterol content of seven selected consumed legumes. Flant Foods Hum Nutr (2021). https://doi.org/10.1007/s11130-020-00875-3

    Article  Google Scholar 

  26. A. Anvar, S. Haghighat Kajavi, H. Ahari, A. Sharifan, A. Motallebi, S. Kakoolaki, S. Paidari, Evaluation of the antibacterial effects of Ag-Tio2 nanoparticles and optimization of its migration to sturgeon caviar (Beluga). Iran J Fisheries Sci 18(4), 954–967 (2019)

    Google Scholar 

  27. R. Hosseini, H. Ahari, P. Mahasti, S. Paidari, Measuring the migration of silver from silver nanocomposite polyethylene packaging based on (TiO 2) into penaeus semisulcatus using titration comparison with migration methods. Fisheries Sci 83(4), 649–659 (2017)

    Article  CAS  Google Scholar 

  28. A. Coccia, A. Carraturo, L. Mosca, A. Masci, A. Bellini, M. Campagnaro, E. Lendaro, Effects of methanolic extract of sour cherry (Prunus cerasus L.) on microbial growth. Int J Food Sci Technol 47(8), 1620–1629 (2012)

    Article  CAS  Google Scholar 

  29. R. Razavi, R.E. Kenari, Antioxidant evaluation of Fumaria parviflora L. extract loaded nanocapsules obtained by green extraction methods in oxidative stability of sunflower oil. J Food Meas Charact 15, 2448–2467 (2021)

    Article  Google Scholar 

  30. Z. Ademović, S. Hodžić, Z. Halilić-Zahirović, D. Husejnagić, J. Džananović, B. Šarić-Kundalić, J. Suljagić, Phenolic compounds, antioxidant and antimicrobial properties of the wild cherry (Prunus avium L.) stem. Acta Per Tech (2017). https://doi.org/10.2298/APT1748001A

    Article  Google Scholar 

  31. E. Capanoglu, D. Boyacioglu, R.C. de Vos, R.D. Hall, J. Beekwilder, Procyanidins in fruit from Sour cherry (Prunus cerasus) differ strongly in chainlength from those in Laurel cherry (Prunus lauracerasus) and Cornelian cherry (Cornus mas). J Berry Res 1(3), 137–146 (2011)

    Article  CAS  Google Scholar 

  32. K. Polatoğlu, B. Demirci, F. Demirci, N. Gören, K.H.C. Başer, Biological activity and essential oil composition of two new Tanacetum chiliophyllum (Fisch. & Mey.) Schultz Bip. var. chiliophyllum chemotypes from Turkey. Indust Crops Prod 39, 97–105 (2012)

    Article  Google Scholar 

  33. V. Sicari, M. Leporini, A.M. Giuffré, F. Aiello, T. Falco, M.T. Pagliuso, A. Ruffolo, A. Reitano, R. Romeo, R. Tundis, Quality parameters, chemical compositions and antioxidant activities of Calabrian (Italy) monovarietal extra virgin olive oils from autochthonous (Ottobratica) and allochthonous (Coratina, Leccino, and Nocellara Del Belice) varieties. J Food Meas Charact 15(1), 363–375 (2021)

    Article  Google Scholar 

  34. S.E. Natheer, Antimicrobial and biochemical analysis of some spices extract against food spoilage pathogens. Internet J Food Safety 12, 71–75 (2010)

    Google Scholar 

  35. M.E. Mirghani, F. Yosuf, N. Kabbashi, J. Vejayan, Z. Yosuf, Antibacterial activity of mango kernel extracts. J Appl Sci 9(17), 3013–3019 (2009)

    Article  CAS  Google Scholar 

  36. H. Jahangirian, M.J. Haron, M.H. Shah, Y. Abdollahi, M. Rezayi, N. Vafaei, Well diffusion method for evaluation of antibacterial activity of copper phenyl fatty hydroxamate synthesized from canola and palm kernel oils. Digest J Nanomat Biostruct 8(3), 1263–1270 (2013)

    Google Scholar 

  37. A. Kirakosyan, E.M. Seymour, J. Wolforth, R. McNish, P.B. Kaufman, S.F. Bolling, Tissue bioavailability of anthocyanins from whole tart cherry in healthy rats. Food Chem 171, 26–31 (2015)

    Article  CAS  Google Scholar 

  38. K. Kołodziejczyk, M. Sójka, M. Abadias, I. Viñas, S. Guyot, A. Baron, Polyphenol composition, antioxidant capacity, and antimicrobial activity of the extracts obtained from industrial sour cherry pomace. Indust Crop Produ 51, 279–288 (2013)

    Article  Google Scholar 

  39. M. Hevesi, A. Blázovics, E. Kállay, A. Végh, M. Stéger-Máté, G. Ficzek, M. Tóth, Biological activity of sour cherry fruit on the bacterial flora of human saliva in vitro. Food Technol Biotechnol 50(1), 117 (2012)

    CAS  Google Scholar 

  40. S. Afonso, I.V. Oliveira, A.S. Meyer, A. Aires, M.J. Saavedra, B. Gonçalves, Phenolic profile and bioactive potential of stems and seed kernels of sweet cherry fruit. Antioxidants 9(12), 1295–1302 (2020)

    Article  CAS  Google Scholar 

  41. J. Xiao, G. Kai, A review of dietary polyphenol-plasma protein interactions: characterization, influence on the bioactivity, and structure-affinity relationship. Crit Rev Food Sci Nutr 52(1), 85–101 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ladan Rashidi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazempour-Samak, M., Rashidi, L., Ghavami, M. et al. Antibacterial and antioxidant activity of sour cherry kernel oil (Cerasus vulgaris Miller) against some food-borne microorganisms. Food Measure 15, 4686–4695 (2021). https://doi.org/10.1007/s11694-021-01035-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01035-0

Keywords

Navigation