Skip to main content
Log in

Phenolic content, antioxidant and anti-inflammatory activities of some Algerian olive stone extracts obtained by conventional solvent and microwave-assisted extractions under optimized conditions

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The recovery of food waste is a stimulating opportunity for and competitive development of agroindustries. In this context, the objective of this study was to report the antioxidant potential and phenolic compounds content of olive stones (OS) of six Algerian cultivars. Two extraction methods were used: microwave assisted extraction (MAE) and conventional solvent extraction (CSE) in order to improve the recovery of total phenolic content (TPC) and the maximization of the two extraction processes by the Box-Behnken design (BBD) from olive stone of Olea Europaea L. cv Ayemele. The optimal processing parameters obtained were (i) for MAE: 22% (v/v) ethanol, 40 s, 500 W, and ratio 65:1 (mL/g) and (ii) for CSE: 33% (v/v) ethanol, 24 min, 71 °C, and ratio 60:1 (mL/g). Phenolic compounds were then extracted from olive stones of six Algerian cultivars with MAE best extraction conditions, as it was the best strategy in term of TPC recovery. The phenolic content was different according to the olive variety. The stones of Chemlale were the richest in TPC (7.23 mg GAE/g) followed by Azeboudj (6.33 mg GAE/g), Atefah (6.04 mg GAE/g), Agraraz (5.63 mg GAE/g), Azeradj (5.35 mg GAE/g) and Ayemel (5.14 mg GAE/g). A similar profile was observed with total flavonoids content and antioxidant activities. The anti-inflammatory effects of the optimized extracts by MAE were assessed regarding their ability to prevent lipopolysaccharide-induced of reactive oxygen species and nitric oxide production in a macrophage cell line (RAW 264.7). Olive stones that are issued from the production of olive oil, and table olives can therefore be considered as renewable by-products thanks to their compounds with high added value. These bioactive compounds can target the food natural additives markets, pharmaceutical and cosmetic industries, all of which are currently very receptive such natural products.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M.A. Martínez-González, A. Gea, M. Ruiz-Canela, The Mediterranean diet and cardiovascular health: a critical review. Circ. Res. 124(5), 779–798 (2019)

    Article  PubMed  CAS  Google Scholar 

  2. L. Verberne, A. Bach-Faig, G. Buckland, L. Serra-Majem, Association between the Mediterranean diet and cancer risk: a review of observational studies. Nutr. Cancer 62(7), 860–870 (2010)

    Article  PubMed  Google Scholar 

  3. M.C. Mentella, F. Scaldaferri, C. Ricci, A. Gasbarrini, G.A.D. Miggiano, Cancer and Mediterranean diet: a review. Nutrients 11(9), 2059 (2019)

    Article  PubMed Central  Google Scholar 

  4. Y. Orihara, Y. Ebizuka, Production of Triterpene Acids by Cell-Suspension Cultures of Olea Europaea. Olives and Olive Oil in Health and Disease Prevention (Elsevier, Amsterdam, 2010), pp. 341–347

    Book  Google Scholar 

  5. Ilbert H. Produits du terroir méditerranéen: conditions d’émergence, d’efficacité et modes de gouvernance (PTM: CEE et MG), projet FEMISE, rapport final, Juin 2005. INAO. Appelations d'origine et paysages. 2006.

  6. A. Romani, N. Mulinacci, P. Pinelli, F.F. Vincieri, A. Cimato, Polyphenolic content in five tuscany cultivars of Olea europaea L. J. Agric. Food Chem. 47(3), 964–967 (1999)

    Article  CAS  PubMed  Google Scholar 

  7. E. Ragazzi, G. Veronese, A. Guiotto, Demethyloleoeuropeine, new glucoside isolated from ripe olives. Anal. Chim. 63(1–2), 13–20 (1973)

    CAS  Google Scholar 

  8. A. Vazquez Roncero, E. Graciani Constante, D.R. Maestro, Phenolic compounds in olive fruits. I. Polyphenols in pulp. Grasas Aceites. 25, 269–279 (1974)

    CAS  Google Scholar 

  9. G. Vlahov, Flavonoids in three olive (Olea europaea) fruit varieties during maturation. J. Sci. Food Agric. 58(1), 157–159 (1992)

    Article  CAS  Google Scholar 

  10. P.S. Rodis, V.T. Karathanos, A. Mantzavinou, Partitioning of olive oil antioxidants between oil and water phases. J. Agric. Food Chem. 50(3), 596–601 (2002)

    Article  CAS  PubMed  Google Scholar 

  11. A. Agourram, D. Ghirardello, K. Rantsiou, G. Zeppa, S. Belviso, A. Romane et al., Phenolic content, antioxidant potential, and antimicrobial activities of fruit and vegetable by-product extracts. Int. J. Food Prop. 16(5), 1092–1104 (2013)

    Article  CAS  Google Scholar 

  12. G. El-Baroty, M. Khalil, S. Mostafa, Natural antioxidant ingredients from by-products of fruits. Am. J. Agric. Biol. Sci. 9(3), 311–320 (2014)

    Article  Google Scholar 

  13. D. Ryan, K. Robards, Critical review. Phenolic compounds in olives. Analyst 123(5), 31R-44R (1998)

    Article  CAS  Google Scholar 

  14. D. Ryan, K. Robards, S. Lavee, Changes in phenolic content of olive during maturation. Int. J. Food Sci. Technol. 34(3), 265–274 (1999)

    Article  CAS  Google Scholar 

  15. J.-R. Morelló, S. Vuorela, M.-P. Romero, M.-J. Motilva, M. Heinonen, Antioxidant activity of olive pulp and olive oil phenolic compounds of the Arbequina cultivar. J. Agric. Food Chem. 53(6), 2002–2008 (2005)

    Article  PubMed  CAS  Google Scholar 

  16. K. Ameer, H.M. Shahbaz, J.H. Kwon, Green extraction methods for polyphenols from plant matrices and their byproducts: a review. Compr. Rev. Food Sci. Food Saf. 16(2), 295–315 (2017)

    Article  PubMed  Google Scholar 

  17. J. Song, D. Li, C. Liu, Y. Zhang, Optimized microwave-assisted extraction of total phenolics (TP) from Ipomoea batatas leaves and its antioxidant activity. Innov. Food Sci. Emerg. Technol. 12(3), 282–287 (2011)

    Article  CAS  Google Scholar 

  18. M.N. Safdar, T. Kausar, M. Nadeem, Comparison of ultrasound and maceration techniques for the extraction of polyphenols from the mango peel. J. Food Process. Preserv. 41(4), e13028 (2017)

    Article  CAS  Google Scholar 

  19. S. Georgé, P. Brat, P. Alter, M.J. Amiot, Rapid determination of polyphenols and vitamin C in plant-derived products. J. Agric. Food Chem. 53(5), 1370–1373 (2005)

    Article  PubMed  CAS  Google Scholar 

  20. A. Djeridane, M. Yousfi, B. Nadjemi, D. Boutassouna, P. Stocker, N. Vidal, Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem. 97(4), 654–660 (2006)

    Article  CAS  Google Scholar 

  21. M.S. Blois, Antioxidant determinations by the use of a stable free radical. Nature 181(4617), 1199 (1958)

    Article  CAS  Google Scholar 

  22. A. Dávalos, C. Gómez-Cordovés, B. Bartolomé, Extending applicability of the oxygen radical absorbance capacity (ORAC− fluorescein) assay. J. Agric. Food Chem. 52(1), 48–54 (2004)

    Article  PubMed  CAS  Google Scholar 

  23. M. Oyaizu, Studies on products of browning reaction. Jpn. J. Nutr. Diet. 44(6), 307–315 (1986)

    Article  CAS  Google Scholar 

  24. T.C. Dinis, V.M. Madeira, L.M. Almeida, Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 315(1), 161–169 (1994)

    Article  CAS  PubMed  Google Scholar 

  25. Bonnaillie C, Salacs M, Vassiliova E, Saykova I. Etude de l’extraction de composés phénoliques à partir de pellicules d’arachide (Arachis hypogaea L.). 2012.

  26. Mafart P, Béliard E. Techniques séparatives: Tehnique et Documentation;-Lavoisier; Apria; 1992.

  27. I. Gülçin, Antioxidant activity of food constituents: an overview. Arch. Toxicol. 86(3), 345–391 (2012)

    Article  PubMed  CAS  Google Scholar 

  28. A. De. Bruno, R. Romeo, F.L. Fedele, A. Sicari, A. Piscopo, M. Poiana, Antioxidant activity shown by olive pomace extracts. J. Environ. Sci. Health B 53(8), 526–533 (2018)

    Article  PubMed  CAS  Google Scholar 

  29. M. Naczk, F. Shahidi, Phenolics in cereals, fruits and vegetables: occurrence, extraction and analysis. J. Pharm. Biomed. Anal. 41(5), 1523–1542 (2006)

    Article  CAS  PubMed  Google Scholar 

  30. R. Chirinos, H. Rogez, D. Campos, R. Pedreschi, Y. Larondelle, Optimization of extraction conditions of antioxidant phenolic compounds from mashua (Tropaeolum tuberosum Ruíz & Pavón) tubers. Sep. Purif. Technol. 55(2), 217–225 (2007)

    Article  CAS  Google Scholar 

  31. M.A. Al-Farsi, C.Y. Lee, Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem. 108(3), 977–985 (2008)

    Article  CAS  PubMed  Google Scholar 

  32. W. Tinsson, Plans d’expérience: Constructions et Analyses Statistiques (Springer, New York, 2010)

    Google Scholar 

  33. S. Chan, C. Lee, C. Yap, W.W. Aida, C. Ho, Optimisation of extraction conditions for phenolic compounds from limau purut (Citrus hystrix) peels. Int. Food Res. J. 16(2), 203–213 (2009)

    Google Scholar 

  34. D.L. Luthria, Influence of experimental conditions on the extraction of phenolic compounds from parsley (Petroselinum crispum) flakes using a pressurized liquid extractor. Food Chem. 107(2), 745–752 (2008)

    Article  CAS  Google Scholar 

  35. C. Liyana-Pathirana, F. Shahidi, Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem. 93(1), 47–56 (2005)

    Article  CAS  Google Scholar 

  36. D. Uma, C. Ho, W.W. Aida, Optimization of extraction parameters of total phenolic compounds from henna (Lawsonia inermis) leaves. Sains Malaysiana. 39(1), 119–128 (2010)

    CAS  Google Scholar 

  37. C. Yap, C. Ho, W.W. Aida, S. Chan, C. Lee, Y. Leong, Optimization of extraction conditions of total phenolic compounds from star fruit (Averrhoa carambola L.) residues. Sains Malaysiana. 38(4), 511–520 (2009)

    CAS  Google Scholar 

  38. V. Mandal, Y. Mohan, S. Hemalatha, Microwave assisted extraction—an innovative and promising extraction tool for medicinal plant research. Pharmacogn. Rev. 1(1), 7–18 (2007)

    CAS  Google Scholar 

  39. B. Lapornik, M. Prošek, A.G. Wondra, Comparison of extracts prepared from plant by-products using different solvents and extraction time. J. Food Eng. 71(2), 214–222 (2005)

    Article  Google Scholar 

  40. B. Lee, J. Jung, Y. Choi, Optimization of microwave-assisted extraction process of Rehmannia Radix preparata by response surface methodology. Food Eng. Progr. 9, 283–290 (2005)

    Google Scholar 

  41. Santos-Buelga, C., Gonzalez-Manzano, S., Dueñas, M., Gonzalez-Paramas, A.M.: Extraction and isolation of phenolic compounds. Natural products isolation. pp. 427–64 (2012)

  42. M. Careri, L. Elviri, A. Mangia, M. Musci, Spectrophotometric and coulometric detection in the high-performance liquid chromatography of flavonoids and optimization of sample treatment for the determination of quercetin in orange juice. J. Chromatogr. A 881(1), 449–460 (2000)

    Article  CAS  PubMed  Google Scholar 

  43. M.H. Alu’datt, I. Alli, K. Ereifej, M. Alhamad, A.R. Al-Tawaha, T. Rababah, Optimisation, characterisation and quantification of phenolic compounds in olive cake. Food Chem. 123(1), 117–122 (2010)

    Article  CAS  Google Scholar 

  44. G. Spigno, L. Tramelli, D.M. De. Faveri, Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J. Food Eng. 81(1), 200–208 (2007)

    Article  CAS  Google Scholar 

  45. A. Telli, N. Mahboub, S. Boudjeneh, O. Siboukeur, F. Moulti-Mati, Optimisation des conditions d’extraction des polyphénols de dattes lyophilisées (Phoenix dactylifera L.) variété ghars. Annales des Sciences et Technologie. 2(2), 107–114 (2010)

    Google Scholar 

  46. L.G. D’Alessandro, P. Vauchel, R. Przybylski, G. Chataigné, I. Nikov, K. Dimitrov, Integrated process extraction–adsorption for selective recovery of antioxidant phenolics from Aronia melanocarpa berries. Sep. Purif. Technol. 120, 92–101 (2013)

    Article  CAS  Google Scholar 

  47. J.A. Larrauri, P. Rupérez, F. Saura-Calixto, Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. J. Agric. Food Chem. 45(4), 1390–1393 (1997)

    Article  CAS  Google Scholar 

  48. B. Zhang, R. Yang, C.-Z. Liu, Microwave-assisted extraction of chlorogenic acid from flower buds of Lonicera japonica Thunb. Sep. Purif. Technol. 62(2), 480–483 (2008)

    Article  CAS  Google Scholar 

  49. C. Proestos, M. Komaitis, Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds. LWT-Food Sci. Technol. 41(4), 652–659 (2008)

    Article  CAS  Google Scholar 

  50. D. Spigno De Faveri, Microwave-assisted extraction of tea phenols: a phenomenological study. J. Food Eng. 93(2), 210–217 (2009)

    Article  CAS  Google Scholar 

  51. M. Elbir, A. Amhoud, M. Mbarki, F. Visioli, Antioxidant activity of a crude preparation rich in phenolic compounds from the olive stones of two Moroccan cultivars, a preliminary study. Curr. Topics Nutraceut. Res. 12(1–2), 9–12 (2014)

    CAS  Google Scholar 

  52. F. Zaidi, N. Hassissene, H. Allouache, M. Kichou, S. Ourdani, K. Rezki et al., Les composes phenoliques, facteur limitant du grignon d’olive chez les ruminants. Revue de Medecine Veterinaire. 160(2), 67 (2009)

    CAS  Google Scholar 

  53. H. Hannachi, W. Elfalleh, S. Marzouk, Oil, protein, antioxidants and free radical scavenging activity of stone from wild olive trees (Olea europaea L.). Pak. J. Pharm. Sci. 26(3), 503–510 (2013)

    CAS  PubMed  Google Scholar 

  54. S. Burda, W. Oleszek, C.Y. Lee, Phenolic compounds and their changes in apples during maturation and cold storage. J. Agric. Food Chem. 38(4), 945–948 (1990)

    Article  CAS  Google Scholar 

  55. C.H. Crisosto, V. Bremer, L. Ferguson, G.M. Crisosto, Evaluating quality attributes of four fresh fig (Ficus carica L.) cultivars harvested at two maturity stages. HortScience 45(4), 707–710 (2010)

    Article  Google Scholar 

  56. J.A. Kennedy, Y. Hayasaka, S. Vidal, E.J. Waters, G.P. Jones, Composition of grape skin proanthocyanidins at different stages of berry development. J. Agric. Food Chem. 49(11), 5348–5355 (2001)

    Article  CAS  PubMed  Google Scholar 

  57. S.M. Cardoso, S. Guyot, N. Marnet, J.A. Lopes-da-Silva, C.M. Renard, M.A. Coimbra, Characterisation of phenolic extracts from olive pulp and olive pomace by electrospray mass spectrometry. J. Sci. Food Agric. 85(1), 21–32 (2005)

    Article  CAS  Google Scholar 

  58. A. Ranalli, S. Contento, L. Lucera, M. Di. Febo, D. Marchegiani, V. Di. Fonzo, Factors affecting the contents of iridoid oleuropein in olive leaves (Olea europaea L.). J. Agric. Food Chem. 54(2), 434–440 (2006)

    Article  CAS  PubMed  Google Scholar 

  59. A. De. Bruno, R. Romeo, A. Piscopo, M. Poiana, Antioxidant quantification in different portions obtained during olive oil extraction process in an olive oil press mill. J. Sci. Food Agric. 101(3), 1119–1126 (2021)

    Article  PubMed  CAS  Google Scholar 

  60. M. Nadour, Extraction, Caractérisation Des Polysaccharides et Des Polyphénols Issus Des Sous Produits Oléicoles (Universite Mouloud MAMMERI, Valorisation Des Polysaccharides à Visée Alimentaire, 2015)

    Google Scholar 

  61. A. Jalili, S. Alipour, A. Sadegzadeh, Antioxidant and antiradical activities of phenolic extracts from Juglanse regia hulls and shells. Int Res J Plant Sci. 1, 282–289 (2011)

    Google Scholar 

  62. I. Stanisavljević, S. Stojičević, D. Veličković, V. Veljković, M. Lazić, Antioxidant and antimicrobial activities of Echinacea (Echinacea purpurea L.) extracts obtained by classical and ultrasound extraction. Chin. J. Chem. Eng. 17(3), 478–483 (2009)

    Article  Google Scholar 

  63. A. Ben Mansour, E.A. Porter, G.C. Kite, M.S. Simmonds, R. Abdelhedi, M. Bouaziz, Phenolic profile characterization of Chemlali olive stones by liquid chromatography-ion trap mass spectrometry. J. Agric. Food Chem. 63(7), 1990–1995 (2015)

    Article  CAS  PubMed  Google Scholar 

  64. G. Rodríguez, A. Lama, R. Rodríguez, A. Jiménez, R. Guillén, J. Fernández-Bolaños, Olive stone an attractive source of bioactive and valuable compounds. Biores. Technol. 99(13), 5261–5269 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Ministry of Higher Education and Scientific Research, Algeria for providing the Algerian – French Scholarship. We would like to thank all members of MIB laboratory at the ISVV of Bordeaux (France) for their precious help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil Kadri.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djemaa-Landri, K., Hamri-Zeghichi, S., Belkhiri-Beder, W. et al. Phenolic content, antioxidant and anti-inflammatory activities of some Algerian olive stone extracts obtained by conventional solvent and microwave-assisted extractions under optimized conditions. Food Measure 15, 4166–4180 (2021). https://doi.org/10.1007/s11694-021-00992-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-00992-w

Keywords

Navigation