Skip to main content

A comparative study of colour characteristics of thermally/non-thermally treated mealworm larvae (Tenebrio molitor) by means of UV/Vis spectroscopy and multivariate analysis

Abstract

The colour of processed mealworms is an important attribute that affects their utilization in food industry. Totally 15 colour and related spectral variables of powders prepared from differently processed (oven drying, freeze-drying, microwave drying, blanching, and their combinations) mealworms larvae (Tenebrio molitor) were evaluated by UV/Vis spectroscopy and multivariate analysis. The results obtained confirmed deterioration of mealworms colour after processing. In general, processing led to a decrease of lightness (L*), hue angle (), whiteness-blue-reflectance, whiteness index (WI) and tinting index coinciding with an increase in the yellowness index (YI), redness (a*), browning index (BI) and total colour difference (ΔE) compared to untreated larvae. Oven drying at higher temperature caused the pronounced darkening described by the highest BI and ΔE values (ΔE = 28.54 ± 0.37, BI = 53.78 ± 0.31). On the other hand, freeze-drying was the most suitable colour protection method. Based on lower BI and ΔE values, the combination of 3 min blanching with microwave and oven drying can be recommended as a proper alternative to freeze-drying. Most of the colour descriptors of processed larvae differed significantly from each other (p < 0.05). Absolute discrimination of processed mealworms larvae was achieved through principal component analysis and discriminant analysis. Values of L*, yellowness (b*), chroma, BI, ΔE and whiteness-blue-reflectance were identified as the most discriminating. Moreover, mutual correlations of monitored parameters, e.g. tinting and WI; a*, b* and C* values; or L* and ΔE were revealed by principal component factoring.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. A. Cappelli, E. Cini, C. Lorini, N. Oliva, G. Bonaccorsi, Food Control (2020). https://doi.org/10.1016/j.foodcont.2019.106877

    Article  Google Scholar 

  2. A. van Huis, Annu. Rev. Entomol. 58, 563 (2013)

    Article  Google Scholar 

  3. A. Bordiean, M. Krzyżaniak, M.J. Stolarski, S. Czachorowski, D. Peni, Agriculture 10, 233 (2020)

    CAS  Article  Google Scholar 

  4. Commission European Regulation (EU) 2015/2283 of the European Parliment and of the Council of 25 November 2015 on novel foods, amending regulation (EU) no 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001 Official Journal of the European Union, vol. L 327/1, (2015)

  5. D. Turck, J. Castenmiller, S. Henauw, J. Kearney, A. Maciuk, C. Pelaez, F. Thies, S. Tsabouri, F. Cubadda, T. Frenzel, R. Marchelli, M. Prieto, J. Schlatter, H. Knutsen, K. Hirsch-Ernst, A. Naska, M. Heinonen, M. Poulsen, H. Loveren, I. Mangelsdorf, EFSA J. (2021). https://doi.org/10.2903/j.efsa.2021.6344

    Article  PubMed  PubMed Central  Google Scholar 

  6. H.-W. Kim, D. Setyabrata, Y.J. Lee, O.G. Jones, Y.H.B. Kim, Innov. Food Sci. Emerg. Technol. 38, 116 (2016)

    CAS  Article  Google Scholar 

  7. T.K. Kim, H.I. Yong, Y.B. Kim, H.W. Kim, Y.S. Choi, Food Sci. Anim. Resour. 39, 521 (2019)

    Article  Google Scholar 

  8. N. Kröncke, S. Grebenteuch, C. Keil, S. Demtröder, L. Kroh, A.F. Thünemann, R. Benning, H. Haase, Insects (2019). https://doi.org/10.3390/insects10040084

    Article  PubMed  PubMed Central  Google Scholar 

  9. N. Ravzanaadii, S.-H. Kim, W.H. Choi, S.-J. Hong, N.-J. Kim, Int. J. Ind. Entomol. 25, 93 (2012)

    Google Scholar 

  10. A. Thévenot, J.L. Rivera, A. Wilfart, F. Maillard, M. Hassouna, T. Senga-Kiesse, S. Le Féon, J. Aubin, J. Clean. Prod. 170, 1260 (2018)

    Article  Google Scholar 

  11. G. Huang, W. Feng, J. Xiong, T. Wang, W. Wang, C. Wang, F. Yang, Eur. Food Res. Technol. 245, 11 (2019)

    CAS  Article  Google Scholar 

  12. S. Lenaerts, M. Van Der Borght, A. Callens, L. Van Campenhout, Food Chem. 254, 129 (2018)

    CAS  Article  Google Scholar 

  13. R. Melis, A. Braca, G. Mulas, R. Sanna, S. Spada, G. Serra, M.L. Fadda, T. Roggio, S. Uzzau, R. Anadda, Innov. Food Sci. Emerg. Technol. 48, 138 (2018)

    CAS  Article  Google Scholar 

  14. M. Elhassan, K. Wendin, V. Olsson, M. Langton, Foods (2019). https://doi.org/10.3390/foods8030095

    Article  PubMed  PubMed Central  Google Scholar 

  15. H. Seo, H.R. Kim, I.H. Cho, Food Sci. Anim. Resour. 40, 649 (2020)

    Article  Google Scholar 

  16. D. Azzollini, A. Derossi, C. Severini, J. Insects Food Feed. 2, 233 (2016)

    Article  Google Scholar 

  17. B. Purschke, H. Brüggen, R. Scheibelberger, H. Jäger, Eur. Food Res. Technol. 244, 269 (2018)

    CAS  Article  Google Scholar 

  18. G. Ssepuuya, D. Nakimbugwe, A. de Winne, R. Smets, J. Claes, M. Van Der Borght, Food Res. Int. (2020). https://doi.org/10.1016/j.foodres.2019.108831

    Article  PubMed  Google Scholar 

  19. C. Witzel, K.R. Gegenfurtner, Annu. Rev. Vis. Sci. 4, 475 (2018)

    Article  Google Scholar 

  20. M. Mascan, J. Food Eng. 48, 169 (2001)

    Article  Google Scholar 

  21. P.B. Pathare, U.L. Opara, F.J. Al-Said, Food Bioprocess Technol. 6, 36 (2013)

    CAS  Article  Google Scholar 

  22. A. Dankowska, A. Domagała, W. Kowalewski, Talanta 172, 215 (2017)

    CAS  Article  Google Scholar 

  23. M. Rafi, R. Jannah, R. Heryanto, R. Kautsar, D.A. Septaningsih, Int. Food Res. J. 25, 643 (2018)

    CAS  Google Scholar 

  24. M. Ferreiro-González, G.F. Barbero, J.A. Álvarez, A. Ruiz, M. Palma, J. Ayuso, Food Chem. 220, 331 (2017)

    Article  Google Scholar 

  25. X.-L. Yu, Y. He, Spectrosc. Lett. 51, 112 (2018)

    CAS  Article  Google Scholar 

  26. A. Bordagaray, S. Dávila, R. Garcia-Arrona, M. Vidal, M. Ostra, J. Chemom. (2019). https://doi.org/10.1002/cem.3176

    Article  Google Scholar 

  27. E. Rohaeti, K. Muzayanah, D.A. Septaningsih, M. Rafi, Indones. J. Chem. 19, 668 (2019)

    CAS  Article  Google Scholar 

  28. T. Afonso, R. Moresco, V.G. Uarrota, B.B. Navarro, E.C. Nunes, M. Maraschin, M. Rocha, J. Integr. Bioinform. (2017). https://doi.org/10.1515/jib-2017-0056

    Article  PubMed  PubMed Central  Google Scholar 

  29. J. Mlcek, O. Rop, M. Borkovcoca, M. Bednarova, Pol. J. Food Nutr. Sci. 64, 147 (2014)

    CAS  Article  Google Scholar 

  30. H.S.G. Tan, A.R.H. Fischer, P. Tinchan, M. Stieger, L.P.A. Steenbekkers, H.C.M. van Trijp, Food Qual. Prefer. 42, 78 (2015)

    Article  Google Scholar 

  31. C.M. Collins, P. Vaskou, Y. Kountouris, Ann. Entomol. Soc. Am. 112, 518 (2019)

    Article  Google Scholar 

  32. A.M. Gueli, G. Bonfiglio, S. Pasquale, S.O. Troja, Color Res. Appl. 42, 236 (2017)

    Article  Google Scholar 

  33. C. Cheico, L. Morrone, G. Bertazza, S. Cappelloza, A. Saviane, F. Gai, N. Di Virgilio, F. Rosi, Animals (Basel) (2019). https://doi.org/10.3390/ani9030103

    Article  Google Scholar 

  34. J.C. Senar, A.P. Møller, I. Ruiz, J.J. Negro, J. Broggi, E. Hohtola, PLoS ONE (2010). https://doi.org/10.1371/journal.pone.0010716

    Article  PubMed  PubMed Central  Google Scholar 

  35. A.A. Gonçalves, A.R.M. de Oliveira, LWT - Food Sci. Technol. 65, 791 (2016)

    Article  Google Scholar 

  36. LabCognition, Colorimetric analysis manual. (LabCognition online software help manual, 2009). https://www.labcognition.com/onlinehelp/en/definitions1.htm. Accessed 2 Dec 2020

  37. R. Hirschler, in Color in food: technological and psychophysical aspects. ed. by J.L. Caivano, M.P. Buera (CRC Press, Boca Raton, 2012), pp. 93–103

    Google Scholar 

  38. N. Kotwaliwale, P. Bakane, A. Verma, J. Food Eng. 78, 1207 (2007)

    Article  Google Scholar 

  39. J.J. Sheehan, A.D. Patel, M.A. Drake, P.L.H. McSweeney, Int. Dairy J. 19, 498 (2009)

    CAS  Article  Google Scholar 

  40. B. Singh, D.V. Parwate, S.K. Shukla, AAPS PharmSciTech 10, 34 (2009)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This contribution is the result of the project APVV-17-0538, “Establishment of pilot facility and the development of mass rearing methods for edible insects production”, supported by the Slovak Research and Development Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blanka Tobolková.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Informed consent

All the authors participated/contributed to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tobolková, B., Takáč, P., Mangová, B. et al. A comparative study of colour characteristics of thermally/non-thermally treated mealworm larvae (Tenebrio molitor) by means of UV/Vis spectroscopy and multivariate analysis. Food Measure 15, 3791–3799 (2021). https://doi.org/10.1007/s11694-021-00957-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-00957-z

Keywords

  • Mealworm larvae powder (Tenebrio molitor)
  • Processing methods
  • Colour evaluation
  • Chemometrics