Skip to main content
Log in

Optimization of process conditions to improve the quality properties of healthy watermelon snacks developed by hot-air drying

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Watermelon is a valuable source of nutrients and antioxidants that are beneficial for human health, but it is a seasonal and easily perishable fruit. Appropriate drying conditions should be considered to maintain the quality and nutritional attributes of watermelons after hot-air drying. This study aimed to investigate the effect of drying temperature and air velocity on some quality characteristics by response surface methodology. The drying trials were performed at temperatures of 55, 65, and 75 °C and air velocity of 1, 1.5, and 2 m/s employing a face-centered composite design. Some physical (a* value and browning index) and chemical (total polyphenols, the ferric reducing/antioxidant power, total anthocyanin, ascorbic acid, sucrose, total sugar, lycopene, total carotenoid, 5-HMF, and non-enzymatic browning) properties of dried watermelons were determined. The results indicated that the effect of drying temperature on the analyzed attributes was more significant than air velocity in general. Polynomial models with high R2 values were generated to predict the responses. The optimum drying conditions obtained (65.425 °C and 1.025 m/s) were experimentally validated. The proposed conditions provided better preservation of the quality characteristics (physical and chemical) studied for the commercialization of dried watermelons as a snack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R.S. Sultana, M.A. Bari, Plant Tissue Cult. 13(2), 173–177 (2003)

    Google Scholar 

  2. G. Bianchi, A. Rizzolo, M. Grassi, L. Provenzi, R.L. Scalzo, Postharvest Biol. Technol. 136, 1–11 (2018)

    Article  CAS  Google Scholar 

  3. K.O. Falade, J.C. Igbeka, F.A. Ayanwuyi, J. Food Eng. 80(3), 979–985 (2007)

    Article  Google Scholar 

  4. C.I. Moraru, J.L. Kokini, Compr. Rev. Food Sci. Food Safe 2(4), 147–165 (2003)

    Article  CAS  Google Scholar 

  5. S.Y. Quek, N.K. Chok, P. Swedlund, Chem. Eng. Process 46(5), 386–392 (2007)

    Article  CAS  Google Scholar 

  6. A. Saxena, T. Maity, P.S. Raju, A.S. Bawa, Food Bioprod. Process 95, 106–117 (2015)

    Article  Google Scholar 

  7. B. Önal, G. Adilettaa, A. Crescitelli, M. Di Matteo, P. Russo, Food Bioprocess Technol. 115, 87–89 (2019)

    Google Scholar 

  8. H. Shang, H. Zhou, M. Duan, R. Li, H. Wu, Y. Lou, Int. J. Biol. Macromol. 112, 889–899 (2018)

    Article  CAS  PubMed  Google Scholar 

  9. K.W. Kong, A. Ismail, C.P. Tan, N.F. Rajab, LWT - Food Sci. Technol. 43, 729–735 (2010)

    Article  CAS  Google Scholar 

  10. B. Bchir, S. Besbes, R. Karoui, H. Attia, M. Paquot, C. Blecker, Food Bioprocess Technol. 5(5), 1840–1852 (2012)

    Article  CAS  Google Scholar 

  11. Ö. Süfer, T.K. Palazoğlu, J. Therm. Anal. Calorim. 137(6), 1981–1990 (2019)

    Article  Google Scholar 

  12. E. Demiray, Y. Tulek, Y. Yilmaz, LWT - Food Sci. Technol. 50(1), 172–176 (2013)

    Article  CAS  Google Scholar 

  13. T. Orikasa, S. Koide, S. Okamoto, T. Imaizumi, Y. Muramatsu, J.I. Takeda et al., J. Food Eng. 125(1), 51–58 (2014)

    Article  Google Scholar 

  14. T. Baysal, N. Ozbalta, S. Gokbulut, B. Capar, O. Tastan, G. Gurlek, J. Therm. Sci. Technol. 35(1), 135–144 (2015)

    Google Scholar 

  15. D.S. Sogi, M. Siddiq, K.D. Dolan, LWT - Food Sci. Technol. 62(1), 564–568 (2015)

    Article  CAS  Google Scholar 

  16. P. Udomkun, M. Nagle, D. Argyropoulos, B. Mahayothee, S. Latif, J. Müller, Food Chem. 196, 712–719 (2016)

    Article  CAS  PubMed  Google Scholar 

  17. M. Zhou, Q. Chen, J. Bi, Y. Wang, X. Wu, Food Chem. 229, 574–579 (2017)

    Article  CAS  PubMed  Google Scholar 

  18. S. Kayran, İ Doymaz, J. Therm. Anal. Calorim. 130(2), 1163–1170 (2017)

    Article  CAS  Google Scholar 

  19. Y. Jia, I. Khalifa, L. Hu, W. Zhu, J. Li, K. Li et al., Food Bioprod. Process 118, 67–76 (2019)

    Article  Google Scholar 

  20. H. Uslu Demir, D. Atalay, H.S. Erge, J. Food Meas. Charact. 13(3), 2032–2040 (2019)

    Article  Google Scholar 

  21. U.E. Inyang, I.O. Oboh, B.R. Etuk, Adv. Chem. Eng. Sci. 8, 27–48 (2018)

    Article  CAS  Google Scholar 

  22. P.S. Madamba, LWT - Food Sci. Technol. 35(7), 584–592 (2002)

    Article  CAS  Google Scholar 

  23. D.P.S. Oberoi, D.S. Sogi, J. Food Eng. 165, 172–178 (2015)

    Article  CAS  Google Scholar 

  24. N.P. Minh, T.T.Y. Nhi, T.N. Nguyen, S.N. Bich, D.T.T. Truc, J. Pharm. Sci. Res. 11(4), 1416–1421 (2019)

    CAS  Google Scholar 

  25. Y.D. Arocho, D. Bellmer, N. Maness, W. McGlynn, P. Rayas-Duarte, J. Food Qual. 35(5), 331–340 (2012)

    Article  CAS  Google Scholar 

  26. A. Lingayat, V.P. Chandramohan, V.R.K. Raju, A. Kumar, Therm. Sci. Eng. Prog. 16, 100477 (2020)

    Article  Google Scholar 

  27. A. Akyıldız, S. Polat, E. Ağçam, J. Food 42, 169–176 (2017)

    Google Scholar 

  28. AOAC, Official Methods of Analysis of the Association of Official Analytical Chemists, 16th edn. (The Association of Official Analytical Chemists Inc., Arlington, VA, 1990).

    Google Scholar 

  29. P. Garcia-Salas, A. Morales-Soto, A. Segura-Carretero, A. Fernández-Gutiérrez, Molecules 15(12), 8813–8826 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. B.J. Xu, S.K.C. Chang, J. Food Sci. 72(2), 159–166 (2007)

    Article  Google Scholar 

  31. C. Guo, J. Yang, J. Wei, Y. Li, J. Xu, Y. Jiang, Nutr. Res. 23(12), 1719–1726 (2003)

    Article  CAS  Google Scholar 

  32. J.Z. Xu, S.Y.V. Yeung, Q. Chang, Y. Huang, Z.-Y. Chen, Br. J. Nutr. 91(6), 873–881 (2004)

    Article  CAS  PubMed  Google Scholar 

  33. A.R. Davis, W.W. Fish, P. Perkins-Veazie, J. Food Sci. 68(1), 328–332 (2003)

    Article  CAS  Google Scholar 

  34. E.T. Quayson, G.S. Ayernor, Food Chem. 105(4), 1525–1529 (2007)

    Article  CAS  Google Scholar 

  35. M. Rada-Mendoza, A. Olano, M. Villamiel, Food Chem. 79(4), 513–516 (2002)

    Article  CAS  Google Scholar 

  36. AOAC, Official Methods of Analysis of AOAC International, 17th edn. (Association of Official Analytical Chemists, Gaithersburg, MD, 2000).

    Google Scholar 

  37. N. Sulaiman, M.I. Idayu, A. Ramlan, A.N.N. Farahiyah, Z.M. Taher, A.N. Rashidah et al., Biocatal. Agric. Biotechnol. 18, 101066 (2019)

    Article  Google Scholar 

  38. Y. Zhong, F. Shahidi, in Handbook of antioxidants for food preservation. ed. by F. Shahidi (Woodhead Publishing, Oxford, 2015), p. 287

    Chapter  Google Scholar 

  39. E. Nakilcioğlu-Taş, Indian J. Pharm. Educ. Res. 52(3), 456–466 (2018)

    Article  Google Scholar 

  40. Ó. Rodríguez, J.V. Santacatalina, S. Simal, J.V. Garcia-Perez, A. Femenia, C. Rosselló, J. Food Eng. 129, 21–29 (2014)

    Article  Google Scholar 

  41. S.M. Jafari, M. Ghalegi Ghalenoei, D. Dehnad, Powder Technol. 311, 59–65 (2017)

    Article  CAS  Google Scholar 

  42. C. Bhattacharjee, V.K. Saxena, S. Dutta, Food Sci. Technol. Int. 23(7), 637–645 (2017)

    Article  CAS  PubMed  Google Scholar 

  43. G. Qiu, D. Wang, X. Song, Y. Deng, Y. Zhao, Food Res. Int. 105, 121–128 (2018)

    Article  CAS  PubMed  Google Scholar 

  44. X. Wang, Y. Feng, C. Zhou, Y. Sun, B. Wu, A.G.A. Yagoub et al., Food Chem. 295, 432–440 (2019)

    Article  CAS  PubMed  Google Scholar 

  45. S. Pinthong, K. Judprasong, N. Tangsuphoom, S. Jittinandana, Y. Nakngamanong, J. Food Sci. Agric. Technol. 5, 61–70 (2019)

    Google Scholar 

  46. H.E. Gan, R. Karim, S.K.S. Muhammad, J.A. Bakar, D.M. Hashim, R.A. Rahman, LWT-Food Sci. Technol. 40(4), 611–618 (2007)

    Article  CAS  Google Scholar 

  47. H. Demir, Ö. Süfer, S. Sezer, J. Food 42(6), 731–742 (2017)

    Google Scholar 

  48. C.C.C. Teixeira, T.P.F. Cabral, L.A. Tacon, I.L. Villardi, A.D. Lanchote, L.A.P. Freitas, Powder Technol. 319, 494–504 (2017)

    Article  CAS  Google Scholar 

  49. X.-F. Wu, M. Zhang, Z. Li, LWT-Food Sci. Technol. 111, 790–798 (2019)

    Article  CAS  Google Scholar 

  50. C.F. Scher, O.R. Alessandro, C.P.Z. Norena, Int. J. Food Sci. Technol. 44, 2169–2175 (2009)

    Article  CAS  Google Scholar 

  51. P. Pinto, C. Santos, C. Henriques, M.G. Basto Lima, M. Fátima Quedas, Elec. J. Env. Agricult. Food Chem. 10(4), 2090–2097 (2011)

    CAS  Google Scholar 

  52. J. Chen, C. Venkitasamy, Q. Shen, T.H. McHugh, R. Zhang, Z. Pan, LWT-Food Sci. Technol. 97, 469–475 (2018)

    Article  CAS  Google Scholar 

  53. Z. Zhang, Q. Wei, M. Nie, N. Jiang, C. Liu, C. Liu et al., LWT-Food Sci. Technol. 96, 357–363 (2018)

    Article  CAS  Google Scholar 

  54. X.H. Yang, L.Z. Deng, A.S. Mujumdar, H.W. Xiao, Q. Zhang, Z. Kan, J. Food Eng. 231, 101–108 (2018)

    Article  Google Scholar 

  55. M. Özdemir, O. Devres, J. Food Eng. 44(1), 31–38 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emine Nakilcioğlu-Taş.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 710 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakilcioğlu-Taş, E., Coşan, G. & Ötleş, S. Optimization of process conditions to improve the quality properties of healthy watermelon snacks developed by hot-air drying. Food Measure 15, 2146–2160 (2021). https://doi.org/10.1007/s11694-020-00808-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00808-3

Keywords

Navigation