Skip to main content
Log in

Valorization of fruit processing by-products: free, esterified, and insoluble bound phytochemical extraction from cherry (Prunus avium) tissues and their biological activities

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Fruit processing by-products having limited utilization and no commercial value are generated in high amounts. However, they are rich in phytochemicals with high nutritional value. Therefore, different techniques and applications including extractions, purifications, and fermentations have been evolved for the recovery of these phytochemicals into high value-added products. Similarly, free (F), esterified (E) and insoluble-bound (B) phenolic fractions of sweet cherry processing by-products including stalk, pulp, seed, and leaf were extracted and the potential of these extracts as a source of natural biological compounds were investigated in this study. Total contents of phenolic (TPC), flavonoid (TFC), and hydrolysable tannin compounds (HTC) were analyzed. Individual phenolics were identified and quantified using liquid chromatography–electrospray ionization–tandem mass spectrometry (LC–ESI–MS/MS). The biological activity of these phytochemicals was determined in terms of antioxidant (DPPH, ABTS, FRAP, and CUPRAC), antidiabetic, and antimicrobial activity. TPC, TFC, and HTC were highly found in F phenolic fractions. Nine phenolic compounds were quantified, most notably in the F phenolic fractions. The enzyme inhibition activity against α-glucosidase (5.88 mg/mL) and α-amylase (0.46 mg/mL) of the E phenolic fractions of seed were significantly higher (p < 0.05) than those of F and B extracts. F fractions of stalk had remarkable antimicrobial activity against selected microorganisms except for Escherichia coli. Two uncorrelated principal components explaining 84.51% of the total variance helped to classify sweet cherry tissues. The results clearly showed that F, E, and B phenolics with their biological properties could be suitable food additives or supplements for enrichment agents in the different formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

F:

Free

E:

Esterified

B:

Insoluble-bound

TPC:

Total phenolic content

TFC:

Total flavonoid content

HTC:

Hydrolysable tannin content

TAC:

Total anthocyanin content

GAE:

Gallic acid equivalent

CE:

Catechin equivalent

TAE:

Tannic acid equivalent

CGE:

Cyanidin-3-O-glucoside equivalents

LC–ESI–MS/MS:

Electrospray ionization–tandem mass spectrometry

DPPH:

2,2 Diphenyl-1-picrylhydrazyl

ABTS:

2,2′-Azino-bis-3ethylbenzothiazoline-6-sulfonic acid

FRAP:

Ferric reducing antioxidant power

CUPRAC:

Cupric reducing antioxidant capacity

TE:

Trolox equivalent antioxidant activity

SEM:

Scanning electron microscopy

IZ:

Inhibition zone

PCA:

Principal component analyses

References

  1. A.D. Webster, C.J. Atkinson, S.J. Vaughan, A.S. Lucas, Acta Hortic. 451, 643–652 (1996)

    Google Scholar 

  2. M. Tavaud, A. Zanetto, J.L. David, F. Laigret, E. Dirlewanger, Heredity 93(6), 631–638 (2004)

    CAS  PubMed  Google Scholar 

  3. B. Szikriszt, A. Doğan, S. Ercisli, M.E. Akcay, A. Hegedűs, J. Halász, Tree Genet. Genomes 9(1), 155–165 (2012)

    Google Scholar 

  4. N. Breitbach, K. Böhning-Gaese, I. Laube, M. Schleuning, J. Ecol. 100(6), 1349–1358 (2012)

    Google Scholar 

  5. J. Quero-García, A. Lezzoni, J. Pulawska, G.A. Lang (eds.), Cherries: Botany, Production and Uses (CABI, Wallingford, 2017)

    Google Scholar 

  6. G. Ferretti, T. Bacchetti, A. Belleggia, D. Neri, Molecules 15(10), 6993–7005 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. S. Martini, A. Conte, D. Tagliazucchi, Food Res. Int. 97, 15–26 (2017)

    CAS  PubMed  Google Scholar 

  8. K.M. Keane, T.W. George, C.L. Constantinou, M.A. Brown, T. Clifford, G. Howatson, Am. J. Clin. Nutr. 103(6), 1531–1539 (2016)

    CAS  PubMed  Google Scholar 

  9. K. Kent, K.E. Charlton, A. Jenner, S. Roodenrys, Int. J. Food Sci. Nutr. 67(1), 47–52 (2015)

    PubMed  Google Scholar 

  10. A. Matias, R. Rosado-Ramos, S. Nunes, I. Figueira, A. Serra, M. Bronze, C. Santos, C. Duarte, Molecules 21(4), 406 (2016)

    PubMed  PubMed Central  Google Scholar 

  11. M. Wang, N. Jiang, Y. Wang, D. Jiang, X. Feng, J. Agric. Food Chem. 65(26), 5413–5420 (2017)

    CAS  PubMed  Google Scholar 

  12. S. Martini, A. Conte, D. Tagliazucchi, Int. J. Food Sci. Nutr. 70(3), 335–348 (2019)

    CAS  PubMed  Google Scholar 

  13. A. Nzihou, Waste Biomass Valoriz. 1(1), 3–7 (2010)

    Google Scholar 

  14. P. Waribam, S.D. Ngo, T.T.V. Tran, S. Kongparakul, P. Reubroycharoen, N. Chanlek, L. Wei, H. Zhang, G. Guan, C. Samart, Waste Manag. 105, 492–500 (2020)

    CAS  PubMed  Google Scholar 

  15. D. Makoure, A. Arhaliass, A. Echchelh, J. Legrand, Waste Biomass Valoriz. 11, 1–9 (2019)

    Google Scholar 

  16. E. Skoronski, D.C. de Oliveira, M. Fernandes, G.F. da Silva, M.D.L.B. Magalhães, J.J. João, J. Clean. Prod. 112, 2553–2559 (2016)

    CAS  Google Scholar 

  17. A. Görgüç, C. Bircan, F.M. Yılmaz, Food Chem. 283, 637–645 (2019)

    PubMed  Google Scholar 

  18. D. Rodríguez-Padrón, A.R. Puente-Santiago, A.M. Balu, M.J. Muñoz-Batista, R. Luque, ChemCatChem 11(1), 18–38 (2019)

    Google Scholar 

  19. D. Rodríguez-Padrón, D. Zhao, R.N. Garín Ortega, C. Len, A.M. Balu, A. García, R. Luque, ACS Sustain. Chem. Eng. 8(3), 1513–1519 (2020)

    Google Scholar 

  20. F. Jesus, A.C. Gonçalves, G. Alves, L.R. Silva, Food Res. Int. 116, 600–610 (2019)

    CAS  PubMed  Google Scholar 

  21. K. Dziadek, A. Kopeć, M. Tabaszewska, Eur. Food Res. Technol. 245(3), 763–772 (2018)

    Google Scholar 

  22. L.B. Hanbali, J.G. Amiry, R.M. Ghadieh, H.A. Hasan, S.S. Koussan, Y.K. Nakhal, A.M. Tarraf, J.J. Haddad, Curr. Nutr. Food Sci. 8(4), 275–291 (2012)

    Google Scholar 

  23. P. Ambigaipalan, A.C. de Camargo, F. Shahidi, J. Agric. Food Chem. 64(34), 6584–6604 (2016)

    CAS  PubMed  Google Scholar 

  24. E. Cuevas Montilla, S. Hillebrand, A. Antezana, P. Winterhalter, J. Agric. Food Chem. 59(13), 7068–7074 (2011)

    PubMed  Google Scholar 

  25. M. Bonoli, V. Verardo, E. Marconi, M.F. Caboni, J. Agric. Food Chem. 52(16), 5195–5200 (2004)

    CAS  PubMed  Google Scholar 

  26. P. Xie, L. Huang, C. Zhang, F. You, Y. Zhang, Food. Bioprod. Process. 93, 29–38 (2015)

    CAS  Google Scholar 

  27. V.L. Singleton, J.A. Rossi, Am. J. Enol. Vitic. 16(3), 144–158 (1965)

    CAS  Google Scholar 

  28. J. Zhishen, T. Mengcheng, W. Jianming, Food Chem. 64(4), 555–559 (1999)

    CAS  Google Scholar 

  29. R.B. Willis, Analysis 123(3), 435–439 (1998)

    CAS  Google Scholar 

  30. D. Ryu, E. Koh, Food Chem. 261, 260–266 (2018)

    CAS  PubMed  Google Scholar 

  31. B. Başyiğit, Ş Dağhan, M. Karaaslan, Grasas Aceites 71(4), e384 (2020)

    Google Scholar 

  32. B. Başyiğit, H. Alaşalvar, N. Doğan, C. Doğan, S. Berktaş, M. Çam, J. Food Meas. Charact. 14, 1671–1681 (2020)

    Google Scholar 

  33. M. Çam, Y. Hışıl, G. Durmaz, Food Chem. 112(3), 721–726 (2009)

    Google Scholar 

  34. M. Cam, B. Basyigit, H. Alasalvar, M. Yilmaztekin, A. Ahhmed, O. Sagdic, Y. Konca, I. Telci, Food Biosci. 35, 100577 (2020)

    CAS  Google Scholar 

  35. R. Apak, K. Güçlü, M. Özyürek, S.E. Çelik, Microchim. Acta 160(4), 413–419 (2007)

    Google Scholar 

  36. I.F.F. Benzie, J.J. Strain, Anal. Biochem. 239(1), 70–76 (1996)

    CAS  PubMed  Google Scholar 

  37. G.J. McDougall, F. Shpiro, P. Dobson, P. Smith, A. Blake, D. Stewart, J. Agric. Food Chem. 53(7), 2760–2766 (2005)

    CAS  PubMed  Google Scholar 

  38. A. Cassano, C. Conidi, R. Ruby-Figueroa, R. Castro-Muñoz, Int. J. Mol. Sci. 19(2), 351 (2018)

    PubMed Central  Google Scholar 

  39. T. Garrido, M. Gizdavic-Nikolaidis, I. Leceta, M. Urdanpilleta, P. Guerrero, K. de la Caba, P.A. Kilmartin, Waste Manag. 88, 110–117 (2019)

    CAS  PubMed  Google Scholar 

  40. M. Maher, S. Taghian Dinani, H. Shahram, J. Food Meas. Charact. 14(2), 749–760 (2019)

    Google Scholar 

  41. M. Çam, Y. Hışıl, Food Chem. 123(3), 878–885 (2010)

    Google Scholar 

  42. C. Li, C. Jiang, H. Jing, Z. Lou, H. Wang, J. Food Meas. Charact. 14(2), 716–724 (2019)

    Google Scholar 

  43. H. Boudries, N. Nabet, N. Chougui, S. Souagui, S. Loupassaki, K. Madani, K. Dimitrov, J. Food Meas. Charact. 13(3), 2241–2252 (2019)

    Google Scholar 

  44. B.A. Acosta-Estrada, J.A. Gutiérrez-Uribe, S.O. Serna-Saldívar, Food Chem. 152, 46–55 (2014)

    CAS  PubMed  Google Scholar 

  45. M. Ayoub, A.C. de Camargo, F. Shahidi, Food Chem. 197, 221–232 (2016)

    CAS  PubMed  Google Scholar 

  46. O. Prakash, R. Baskaran, V.B. Kudachikar, Food Chem. 299, 125114 (2019)

    CAS  PubMed  Google Scholar 

  47. M.J. Rahman, A.C. de Camargo, F. Shahidi, J. Funct. Foods 35, 622–634 (2017)

    CAS  Google Scholar 

  48. A.C. de Camargo, M.A.B. Regitano-d’Arce, A.C.T. Biasoto, F. Shahidi, J. Agric. Food Chem. 62(50), 12159–12171 (2014)

    PubMed  Google Scholar 

  49. C. Zhang, Y. Ma, F. Gao, Y. Zhao, S. Cai, M. Pang, J. Funct. Foods 40, 729–735 (2018)

    Google Scholar 

  50. K.K. Adom, R.H. Liu, J. Agric. Food Chem. 50(21), 6182–6187 (2002)

    CAS  PubMed  Google Scholar 

  51. A. Chandrasekara, F. Shahidi, J. Agric. Food Chem. 58, 6706 (2010)

    CAS  PubMed  Google Scholar 

  52. G.-L. Chen, X. Zhang, S.-G. Chen, M.-D. Han, Y.-Q. Gao, J. Funct. Foods 30, 290–302 (2017)

    CAS  Google Scholar 

  53. M.B. Hossain, D.K. Rai, N.P. Brunton, A.B. Martin-Diana, C. Barry-Ryan, J. Agric. Food Chem. 58(19), 10576–10581 (2010)

    CAS  PubMed  Google Scholar 

  54. R. Baskaran, D. Pullencheri, R. Somasundaram, Food Res. Int. 82, 121–127 (2016)

    CAS  Google Scholar 

  55. A.C. de Camargo, M.A.B. Regitano-d’Arce, C.R. Gallo, F. Shahidi, J. Funct. Foods 12, 129–143 (2015)

    Google Scholar 

  56. A. Chandrasekara, F. Shahidi, J. Funct. Foods 3(3), 144–158 (2011)

    CAS  Google Scholar 

  57. R. Ben Said, A.I. Hamed, U.A. Mahalel, A.S. Al-Ayed, M. Kowalczyk, J. Moldoch, W. Oleszek, A. Stochmal, Int. J. Mol. Sci. 18(3), 512 (2017)

    PubMed Central  Google Scholar 

  58. M.J. Rahman, A. Costa de Camargo, F. Shahidi, Food Chem. 240, 917–925 (2018)

    CAS  PubMed  Google Scholar 

  59. J. Sun, F. Liang, Y. Bin, P. Li, C. Duan, Molecules 12(3), 679–693 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  60. P.D. Boccio, A.D. Deo, A.D. Curtis, N. Celli, L. Iacoviello, D. Rotilio, J. Chromatogr. B 785(1), 47–56 (2003)

    Google Scholar 

  61. R. Flamini, A. Dalla Vedova, Rapid Commun. Mass Spectrom. 18(17), 1925–1931 (2004)

    CAS  PubMed  Google Scholar 

  62. M. Yasir, B. Sultana, F. Anwar, J. Food Sci. Technol. 55(7), 2370–2376 (2018)

    CAS  PubMed  Google Scholar 

  63. A. Maruszewska, J. Tarasiuk, Phytother. Res. 33(4), 1208–1221 (2019)

    CAS  PubMed  Google Scholar 

  64. B.A. Graf, C. Ameho, G.G. Dolnikowski, P.E. Milbury, C.-Y. Chen, J.B. Blumberg, J. Nutr. 136(1), 39–44 (2006)

    CAS  PubMed  Google Scholar 

  65. J. Bernatoniene, D. Kopustinskiene, Molecules 23(4), 965 (2018)

    PubMed Central  Google Scholar 

  66. Z. Lou, H. Wang, S. Rao, J. Sun, C. Ma, J. Li, Food Control 25(2), 550–554 (2012)

    CAS  Google Scholar 

  67. V.N. Lima, C.D.M. Oliveira-Tintino, E.S. Santos, L.P. Morais, S.R. Tintino, T.S. Freitas, Y.S. Geraldo, R.L.S. Pereira, R.P. Cruz, I.R.A. Menezes, H.D.M. Coutinho, Microb. Pathog. 99, 56–61 (2016)

    CAS  PubMed  Google Scholar 

  68. C. Pang, Z. Zheng, L. Shi, Y. Sheng, H. Wei, Z. Wang, L. Ji, Free Radic. Biol. Med. 91, 236–246 (2016)

    CAS  PubMed  Google Scholar 

  69. F.U. Amin, S.A. Shah, M.O. Kim, Sci. Rep. 7(1), 1–15 (2017)

    Google Scholar 

  70. H.S. Arruda, G.A. Pereira, G.M. Pastore, Food Anal. Methods 10(1), 100–110 (2016)

    Google Scholar 

  71. M.R. Loizzo, R. Tundis, M. Bonesi, F. Menichini, V. Mastellone, L. Avallone, F. Menichini, J. Food Compos. Anal. 25(2), 179–184 (2012)

    CAS  Google Scholar 

  72. H.S. Arruda, G.A. Pereira, D.R. de Morais, M.N. Eberlin, G.M. Pastore, Food Chem. 245, 738–749 (2018)

    CAS  PubMed  Google Scholar 

  73. M. Naczk, F. Shahidi, J. Chromatogr. 1054(1–2), 95–111 (2004)

    CAS  Google Scholar 

  74. P. Xie, L. Huang, C. Zhang, Y. Zhang, J. Funct. Foods 16, 460–471 (2015)

    CAS  Google Scholar 

  75. M. Peña-Cerda, J. Arancibia-Radich, P. Valenzuela-Bustamante, R. Pérez-Arancibia, A. Barriga, I. Seguel, L. García, C. Delporte, Food Chem. 215, 219–227 (2017)

    PubMed  Google Scholar 

  76. I. Gülçin, J. Enzyme Inhib. Med. Chem. 23(6), 871–876 (2008)

    PubMed  Google Scholar 

  77. J.-S. Kim, Prev. Nutr. Food Sci. 23(1), 35–45 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  78. A.C. Gonçalves, C. Bento, B.M. Silva, L.R. Silva, Food Res. Int. 95, 91–100 (2017)

    PubMed  Google Scholar 

  79. Z. Yin, Afr. J. Pharm. Pharmacol. 6(45), 3118–3123 (2012)

    Google Scholar 

  80. M. Pallavi, H. Rani, A. Kuvalekar, P. Ranjekar, Int. J. Appl. Biol. Pharm. 4, 168–177 (2013)

    Google Scholar 

  81. Z. Ademovic, S. Hodzic, Z. Halilic-Zahirovic, D. Husejnagic, J. Dzananovic, B. Saric-Kundalic, J. Suljagic, Acta Period. Technol. 48(1), 1–13 (2017)

    CAS  Google Scholar 

  82. E.M. McCarrell, S.W. Gould, M.D. Fielder, A.F. Kelly, W. El Sankary, D.P. Naughton, BMC Complement. Altern. Med. 8(1), 1–7 (2008)

    Google Scholar 

  83. E.M.C. Alexandre, S. Silva, S.A.O. Santos, A.J.D. Silvestre, M.F. Duarte, J.A. Saraiva, M. Pintado, Food Res. Int. 115, 167–176 (2019)

    CAS  PubMed  Google Scholar 

  84. R. Kossah, H. Zhang, W. Chen, Food Control 22(1), 128–132 (2011)

    CAS  Google Scholar 

  85. K.E. Heim, A.R. Tagliaferro, D.J. Bobilya, J. Nutr. Biochem. 13(10), 572–584 (2002)

    CAS  PubMed  Google Scholar 

  86. T.A. Geissman, Compr. Biochem. 9, 213–250 (1963)

    Google Scholar 

  87. R.S. Govardhan Singh, P.S. Negi, C. Radha, J. Funct. Foods 5(4), 1883–1891 (2013)

    CAS  Google Scholar 

  88. B. Gullon, M.E. Pintado, J.A. Pérez-Álvarez, M. Viuda-Martos, Food Control 59, 94–98 (2016)

    CAS  Google Scholar 

  89. S. Kharchoufi, F. Licciardello, L. Siracusa, G. Muratore, M. Hamdi, C. Restuccia, Ind. Crop. Prod. 111, 345–352 (2018)

    CAS  Google Scholar 

  90. D. Granato, J.S. Santos, G.B. Escher, B.L. Ferreira, R.M. Maggio, Trends Food Sci. Technol. 72, 83–90 (2018)

    CAS  Google Scholar 

  91. Z. Hanusz, B. Ślaska-Grzywna, A. Blicharz-Kania, K. Klimek, D. Andrejko, M. Stoma, J. Food Meas. Charact. 12(4), 2964–2970 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by Harran University Scientific Research Projects Unit (Project Number HUBAP-19055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Karaaslan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yüksekkaya, Ş., Başyiğit, B., Sağlam, H. et al. Valorization of fruit processing by-products: free, esterified, and insoluble bound phytochemical extraction from cherry (Prunus avium) tissues and their biological activities. Food Measure 15, 1092–1107 (2021). https://doi.org/10.1007/s11694-020-00698-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00698-5

Keywords

Profiles

  1. Mehmet Karaaslan