Skip to main content
Log in

Quality matrix reveals the potential of Chak-hao as a nutritional supplement: a comparative study of matrix components, antioxidants and physicochemical attributes

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In the current trend of increased health consciousness in response to increased incidence of lifestyle disorders, functional foods, and nutritional supplements got immense acceptance globally. Whole grain foods rich in functional bio-actives being a better substitute for supplements, there is an emerged interest in exploring potential candidates like pigmented rice. The present study thus aims to evaluate the natural variability in matrix composition owing nutritional and antioxidant potential of pigmented niche rice varieties like Matta (red) and Chak-hao (black) compared to non-pigmented (NJ 72 and PB 1509). Comprehensive NQM developed indicated that Chak-hao, geographical indication (GI) rice has stout nutritional makeup in terms of phenolics (2.5 mg/g GAE), anthocyanins (0.65 g/kg), proanthocyanidins (54 mg/100 g), antioxidant activity (36 µmol TE/g) and resistant starch (4.13%) compared to Matta. The content of high-quality fatty acids like oleic (38.8%), linoleic (29%), and anthocyanin forms like cyanidin-3-glucoside (C3G)- 304 mg/Kg, delphinidin-3-glucoside (D3G)- 220 mg/Kg and peonidin-3-glucoside (P3G)- 120 mg/Kg was also most expressive in the black pigmented rice Chak-hao. Highly significant (p < 0.05) antioxidant activity and positive correlation with total phenolics, anthocyanins and proanthocyanidins content were most evident in pigmented varieties. Physicochemical attributes endorsing cooking time, water uptake ratio, grain elongation ratio, gruel solid loss and swelling ratio varied between 15–35 min, 2.17–3.2, 1.5–2.3, 0.28–1.25 and 1.75–2.66 respectively. The correlation between nutritional attributes endorsing antioxidant potential being strongly positive and most significant for Chak-hao, it could be the stellar addition for functional food industry as a nutritional supplement for addressing the ever-increasing pandemics like diabetes, obesity and other chronic diseases.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADV:

Alkali digestion value

AC:

Amylose content

APC:

Amylopectin content

C3G:

Cyanidin-3-glucoside

D3G:

Delphinidin-3-glucoside

P3G:

Peonidin-3-glucoside

FA:

Fatty acids

GC:

Gel consistency

GC-MS:

Gas chromatography–mass spectrometry

RS:

Resistant starch

TSC:

Total starch content

TPC:

Total phenolic content

TAC:

Total anthocyanin content

TPAC:

Total proanthocyanidin content

TAA:

Total antioxidant activity

UPLC:

Ultra-performance liquid chromatography

NQM:

Nutritional quality matrix

References

  1. P. McMichael, Res. Rural Sociol. Dev. 11, 265–299 (2005)

    Google Scholar 

  2. H. Walls, P. Baker, E. Chirwa, B. Hawkins, Glob. Food Sec. 21, 69–71 (2019)

    Google Scholar 

  3. Grand View Research (2020) https://www.grandviewresearch.com/press-release/global-nutraceuticals-market

  4. B.L. Tan, M.E. Norhaizan, W.P.P. Liew, H. Sulaiman Rahman, Front. Pharmacol. 9, 1162 (2018). https://doi.org/10.3389/fphar.2018.01162

    Article  PubMed  PubMed Central  Google Scholar 

  5. T.M. Gibson, M.F. Leah, A.T. Joseph, S. Arthur, Semin. Oncol. 37, 282–296 (2010)

    PubMed  PubMed Central  Google Scholar 

  6. Statista (2020) https://www.statista.com/statistics/1050925/india-annual-availability-of-cerealspercapita/#:~:text=In%25202019%2C%2520about%2520162%2520kilograms,others%2520to%2520the%2520source

  7. Ricepedia, https://ricepedia.org/rice-as-food/the-global-staple-rice-consumers

  8. V. Krishnan, R. Rani, M. Awana, D. Pitala, A. Kulshreshta, S. Sharma, H. Bollinedi, A. Singh, B. Singh, A.K. Singh, S. Praveen, Food Chem. (2021)

  9. K. Meera, M. Smita, S. Haripriya, S. Sen, J. Cereal Sci. 87, 202–208 (2019)

    CAS  Google Scholar 

  10. H. Guo, W. Ling, Q. Wang, C. Liu, Y. Hu, M. Xia, X. Feng, X. Xia, Plants Food Hum. Nutr. 62, 1–6 (2007)

    CAS  Google Scholar 

  11. S.M. Boue, K.W. Daigle, M.H. Chen, H. Cao, M.L. Heiman, J. Agric. Food Chem. 64, 5345–5353 (2016)

    CAS  PubMed  Google Scholar 

  12. M. Ruffo, O.I. Parisi, L. Scrivano, D. Restuccia, F. Amone, M.S. Sinicropi, R. Malivindi, G. Aiello, F. Puoci, Curr. Nutr. Food Sci. 14, 121–127 (2018)

    CAS  Google Scholar 

  13. M.H. Chen, A.M. McClung, C.J. Bergman, Food Chem. 208, 279–287 (2016)

    CAS  PubMed  Google Scholar 

  14. G. Deepa, V. Singh, K.A. Naidu, J. Food Sci. Technol. 47, 644–649 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. S. Pal, T.B. Bagchi, K. Dhali, A. Kar, P. Sanghamitra, S. Sarkar, M. Samaddar, J. Majumder, J. Food Sci. Technol. 56, 1484–1494 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. S. Praveen, A. Singh, V. Krishnan, J. Rice Res. 10, 1–11 (2018)

    Google Scholar 

  17. S.S. Isbilir, D. Tuncay, Eur. J. Lipid Sci. Tech. 3, 51–60 (2014)

    Google Scholar 

  18. R. Sompong, S. Siebenhandl-Ehn, G. Linsberger-Martin, E. Berghofer, Food Chem. 124, 132–140 (2011)

    CAS  Google Scholar 

  19. F.M. Bhat, C.S. Riar, J. Texture Stud. 48, 160–170 (2017)

    PubMed  Google Scholar 

  20. K.M. Clegg, J. Sci. Food Agric. 7, 40–44 (1956)

    CAS  Google Scholar 

  21. B.O. Juliano, Cereal Sci. Today 16, 334–360 (1971)

    Google Scholar 

  22. S. Chen, M. Hoene, J. Li, Y. Li, X. Zhao, H.U. Häring, E.D. Schleicher, C. Weigert, G. Xu, R. Lehmann, J. Chromatogr. A. 1298, 9–16 (2013)

    CAS  PubMed  Google Scholar 

  23. V. Sujata, D.K. Yadava, D. Malik, R.S. Tanwar, K.V. Prabhu, Indian J. Genet. 68, 456–458 (2008)

    Google Scholar 

  24. V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventós, in Methods in Enzymologym, vol 299 (Academic press, 1999), pp. 152–178

  25. F.S. Hosseinian, W. Li, T. Beta, Food Chem. 109, 916–924 (2008)

    CAS  PubMed  Google Scholar 

  26. R. Parvathy, S. Mohanlal, C. Pushpan, A. Helen, A. Jayalekshmy, Food Sci. Biotechnol. 23, 1379–1388 (2014)

    CAS  Google Scholar 

  27. R. Apak, K. Guclu, M. Ozyurek, S.E. Karademir, J. Agric. Food Chem. 52, 7970–7981 (2004)

    CAS  PubMed  Google Scholar 

  28. B. Thanuja, R. Parimalavalli, Int. J. Health Sci. Res. 8, 241–248 (2018)

    Google Scholar 

  29. A. Rohman, S. Helmiyati, M. Hapsari, D.L. Setyaningrum, Int. Food Res. J. 21, 13–24 (2014)

    Google Scholar 

  30. L.R. Chemutai, M.A. Musyoki, W.F. Kioko, N.S. Mwenda, K.G. Muriira, N.M. Piero, Anal. Biochem. 5, 285 (2016). https://doi.org/10.4172/2161-1009.1000285

    Article  CAS  Google Scholar 

  31. A.M. Ibanez, D.F. Wood, W.H. Yokoyama, I.M. Park, M.A. Tinoco, C.A. Hudson, K.S. McKenzie, C.F. Shoemaker, J. Agric. Food Chem. 55, 6761–6771 (2007)

    CAS  PubMed  Google Scholar 

  32. E. Fuentes-Zaragoza, E. Sanchez-Zapata, E. Sendra, E. Sayas, C. Navarro, J. Fernandez-Lopez, J.A. Perez-Alvarez, Starch-Starke 63, 406–415 (2011)

    CAS  Google Scholar 

  33. L. Roman, M.M. Martinez, Foods 8, 267 (2019). https://doi.org/10.3390/foods8070267

    Article  CAS  PubMed Central  Google Scholar 

  34. V. Krishnan, D. Mondal, H. Bollinedi, S. Srivastava, S.V. Ramesh, L. Madhavan, A. Singh, A.K, Singh, S. Praveen, Int. J. Biol. Macromol. (2020)

  35. Z. Zhou, C. Blanchard, S. Helliwell, K. Robards, J. Cereal Sci. 37, 327–335 (2003)

    CAS  Google Scholar 

  36. N. Bahrami, L. Yonekura, R. Linforth, M. Carvalho da Silva, S. Hill, S. Penson, G. Chope, I.D. Fisk, J. Sci. Food Agric. 94, 415–423 (2014)

    CAS  PubMed  Google Scholar 

  37. V. Krishnan, S. Gothwal, A. Dahuja, T. Vinutha, B. Singh, M. Jolly, S. Praveen, A. Sachdev, Food Chem. 245, 246–253 (2018)

    CAS  PubMed  Google Scholar 

  38. M.N. Irakli, V.F. Samanidou, D.N. Katsantonis, C.G. Biliaderis, I.N. Papadoyannis, Cereal Res. Commun. 44, 98–110 (2016)

    CAS  Google Scholar 

  39. N. Pengkumsri, C. Chaiyasut, C. Saenjum, S. Sirilun, S. Peerajan, P. Suwannalert, S. Sirisattha, B.S. Sivamaruthi, Food Sci. Technol. 35, 331–338 (2015)

    Google Scholar 

  40. Y. Shao, Z. Hu, Y. Yu, R. Mou, Z. Zhu, T. Beta, Food Chem. 239, 733–741 (2018)

    CAS  PubMed  Google Scholar 

  41. A. Gunaratne, K. Wu, D. Li, A. Bentota, H. Corke, Y.Z. Cai, Food Chem. 138, 1153–1161 (2013)

    CAS  PubMed  Google Scholar 

  42. A.N. Chiang, H.L. Wu, H.I. Yeh, C.S. Chu, H.C. Lin, W.C. Lee, Lipids 41, 797–803 (2006)

    CAS  PubMed  Google Scholar 

  43. I.D. Asem, R.K. Imotomba, P.B. Mazumder, J.M. Laishram, Symbiosis 66, 47–54 (2015)

    CAS  Google Scholar 

  44. S.A. Mir, S.J.D. Bosco, M.A. Shah, M.M. Mir, K.V. Sunooj, J. Food Meas. Charact. 10, 177–184 (2016)

    Google Scholar 

  45. F.D. Goffman, C.J. Bergman, J. Sci. Food Agic. 84, 1235–1240 (2004)

    CAS  Google Scholar 

  46. P. Prathepha, V. Daipolmak, S. Samappito, V. Baimai, Sci. Asia. 31, 69–75 (2005)

    CAS  Google Scholar 

  47. T. Umemoto, M. Yano, H. Satoh, A. Shomura, Y. Nakamura, Theor. Appl. Genet. 104, 1–8 (2002)

    CAS  PubMed  Google Scholar 

  48. E. Bertoft, Agronomy 7, 56 (2017). https://doi.org/10.3390/agronomy7030056

    Article  CAS  Google Scholar 

  49. S. Wanchana, T. Toojinda, S. Tragoonrung, A. Vanavichit, Plant Sci. 165, 1193–1199 (2003)

    CAS  Google Scholar 

  50. H.Y. Kim, K.M. Kim, J. Plant Biotechnol. 43, 76–81 (2016)

    Google Scholar 

  51. Y. He, Y. Han, L. Jiang, C. Xu, J. Lu, M. Xu, Mol. Breed. 18, 277–290 (2006)

    CAS  Google Scholar 

  52. G.S. Khush, C.M. Paule, N.M. De la-Cruz, in Proceedings of the workshop on chemical aspects of rice grain quality. (International Rice Research Institute, Los Banos, Philippines, 1978), pp. 21–31

  53. U. Ravi, L. Menon, G. Gomathy, C. Parimala, R. Rajeshwari, Ind. J. Tradit. Knowl. 11, 114–122 (2012)

    Google Scholar 

  54. S.J. Bhonsle, K. Sellappan, India Recent Res. Sci. 2, 88–97 (2010)

    Google Scholar 

  55. B.V. Hirannaiah, M.K. Bhashyam, S.Z. Ali, J. Food Sci. Technol. 38, 116–119 (2001)

    Google Scholar 

  56. V. Prathap, K. Ali, A. Singh, C. Vishwakarma, V. Krishnan, V. Chinnusamy, A. Tyagi, Plant Physiol. Biochem. 142, 440–451 (2019)

    CAS  Google Scholar 

  57. V. Krishnan, M. Awana, M.K. Samota, S.I. Warwate, A. Kulshreshtha, M. Ray, H. Bollinedi, A.K. Singh, S.J. Thandapilly, S. Praveen, A. Singh, Int. J. Biol. Macromol. 152, 1213–1223 (2020)

    PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support received from ICAR—Indian Agricultural Research Institute (IARI), Ministry of Agriculture, Government of India and DST-SERB (EMR/2016/005722, Department of Science and Technology, Government of India. We also acknowledge Dr. Sijo Joseph Thandapilly (Research Scientist, Agriculture and Agri-Food Canada and Adjunct Professor, Department of Human Nutritional Sciences, University of Manitoba, Canada) for providing critical feedback and shaping the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

VK, AS and SP conceived the idea. VK and AS designed the experiments. VK performed food matrix components and MA performed cooking quality analysis. The genotypes were multiplied and provided by HB, AKS and SS. APRR performed phenolic extraction and characterization. NB carried out anthocyanin profiling using UPLC. HB performed FA profiling. SS carried out the statistical analysis, assisted in developing heat map and correlation matrix. VK took the lead in writing the manuscript and developing the nutritional quality matrix (NQM). All authors discussed the results and contributed to the final manuscript.

Corresponding authors

Correspondence to Archana Singh or Shelly Praveen.

Ethics declarations

Conflict of interest

We confirm that there are no known conflicts of interest associated with this work and there has been no financial support that could have influenced its outcome.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, V., Awana, M., Raja Rani, A.P. et al. Quality matrix reveals the potential of Chak-hao as a nutritional supplement: a comparative study of matrix components, antioxidants and physicochemical attributes. Food Measure 15, 826–840 (2021). https://doi.org/10.1007/s11694-020-00677-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00677-w

Keywords

Navigation