Skip to main content
Log in

Evaluation of qualitative changes of apple-beetroot juice during long-term storage at different temperatures

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The effect of storage conditions on changes of pH, total soluble solids (°Brix), colour, betalains (betacyanins and betaxanthins), and 5-hydroxymethylfurfural was investigated in apple-beetroot juices stored at 2, 7 and 20 °C for 120 days. The results obtained showed that the quality of apple-beetroot juice is significantly influenced by temperature and storage duration. Increasing storage time and temperature induced an apparent rise (P < 0.05) of lightness (L*), yellowness (b*), hue angle, total colour difference (ΔE) and 5-hydroxymethylfurfural. Maximal concentration of 5-hydroxymethylfurfural reached 14.97 ± 0.03 mg/L at 20 °C; however, this concentration is under the allowable maximal level in apple juice (20 mg/L). The increase in total colour difference and 5-hydroxymethylfurfural concentration was associated with a decrease of betacyanins and betaxanthins, confirmed by strong inverse correlations (r from − 0.7991 to − 0.9813). Degradation of both betacyanins and betaxanthins followed the first-order kinetic model and showed positive correlation with redness (a*) and chroma. Higher rate constants (k) for betacyanin degradation (k ≈ 0.0064–0.0285 day−1) in comparison with the rate constants for betaxanthin degradation (k ≈ 0.0073–0.0471 day−1) demonstrate that betacyanins degraded slightly faster. The changes in all monitored characteristics were significantly greater at 20 °C (P < 0.05) than at 7 and 2 °C, except pH and °Brix. Therefore, apple-beetroot juices should be stored at lower temperatures to maintain their acceptable quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

A:

Absorbance

a* :

Greenness/redness

AA:

Ascorbic acid

ANOVA Tukey’s HSD:

Analysis of variance-Tukey’s honest significant difference

b* :

Blueness/yellowness

BC:

Betacyanins

BX:

Betaxanthins

°Brix:

Total soluble solids

CIE L*a*b* :

Colour space defined by International Commission for Illumination

c t = 0 :

Initial concentration of betacyains/betaxanthins (mg/L)

c t :

Concentration of betacyains/betaxanthins at a particular time (mg/L)

°C:

Celsius degree

DF :

Dilution factor

ε:

Molar extinction coefficient (L/mol cm)

ΔE :

Total colour difference

HMF:

5-Hydroxymethyfurfural

HPLC–DAD:

High performance liquid chromatography–diode array detector

HPLC–PDA:

High performance liquid chromatography–photo diode array detector

k :

First-order rate constant (day1)

λ:

Wavelength (nm)

l :

Path lenght of 1-cm cuvette

L* :

Lightness

LOD:

Limit of detection (mg/L)

LOQ:

Limit of quantification (mg/L)

MW :

Molecular weight (g/mol)

P:

Probability

PET:

Polyethylene terephthalate

r:

Correlation coefficient

RSD:

Relative standard deviation

t :

Ttime

t 1/2 :

Half-time period (day)

UV–VIS:

Ultraviolet–visible

v/v:

Volume/volume

References

  1. P.B. Pathare, U.L. Opara, F.A.J. Al-Said, Food Bioprocess Tech. (2013). https://doi.org/10.1007/s11947-012-0867-9

    Article  Google Scholar 

  2. F. Cairone, S. Carradori, M. Locatelli, M.A. Casadei, S. Cesa, Eur. Food Res. Technol. (2020). https://doi.org/10.1007/s00217-019-03345-6

    Article  Google Scholar 

  3. D.M. Barrett, J.C. Beaulieu, R. Shewfelt, Crit. Rev. Food Sci. Nutr. (2010). https://doi.org/10.1080/10408391003626322

    Article  PubMed  Google Scholar 

  4. N.B. Kardile, V. Nanda, S. Thakre, Agric. Res. (2019). https://doi.org/10.1007/s40003-019-00434-6

    Article  Google Scholar 

  5. L. Petruzzi, D. Campaniello, B. Speranza, M.R. Corbo, M. Sinigaglia, A. Bevilacqua, Compr. Rev. Food Sci. Food Saf. (2017). https://doi.org/10.1111/1541-4337.12270

    Article  Google Scholar 

  6. A.M. Grumezescu, A. M. Holban, in Safety Issues in Beverage production. volume 18: the science of beverages (Woodhead Publishing, Duxford, 2020), p. 508

  7. F. Abbès, S. Besbes, B. Bchir, W. Kchaou, H. Attia, Ch. Blecker, Food Sci. Technol. Int. (2012). https://doi.org/10.1177/1082013212452477

    Article  Google Scholar 

  8. A. Choudhary, V. Kumar, S. Kumar, I. Majid, P. Aggarwal, S. Suri, Toxin Rev. (2020). https://doi.org/10.1080/15569543.2020.1756857

    Article  Google Scholar 

  9. H. Remini, Ch Mertz, A. Belbahi, N. Achir, M. Dornier, K. Madani, Food Chem. (2015). https://doi.org/10.1016/j.foodchem.2014.10.069

    Article  PubMed  Google Scholar 

  10. S. Kowalski, M. Lukasiewicz, A. Duda-Chodak, G. Zięć, Pol. J. Food Nutr. Sci. (2013). https://doi.org/10.2478/v10222-012-0082-4

    Article  Google Scholar 

  11. H. Boulebd, A. Mechler, N.T. Hoa, Q.V. Vo, New J. Chem. (2020). https://doi.org/10.1039/D0NJ01567A

    Article  Google Scholar 

  12. L. Zhao, J. Chen, J. Su, L. Li, S. Hu, B. Li, X. Zhang, Z. Xu, T. Chen, J. Agric. Food Chem. (2013). https://doi.org/10.1021/jf403098y

    Article  PubMed  Google Scholar 

  13. J. Wruss, G. Waldenberger, S. Huemer, P. Uygun, P. Lanzerstorfer, U. Müller, O. Höglinger, J. Weghuber, J. Food Compost. Anal. (2015). https://doi.org/10.1016/j.jfca.2015.03.005

    Article  Google Scholar 

  14. E. Łata, A. Fulczyk, T. Kowalska, M. Sajewicz, J. Chromatogr. Sci. (2019). https://doi.org/10.1093/chromsci/bmz099

    Article  PubMed  Google Scholar 

  15. A. Czyżowska, K. Siemianowska, M. Śniadowska, A. Nowak, Pol. J. Food Nutr. Sci. (2020). https://doi.org/10.31883/pjfns/116611

    Article  Google Scholar 

  16. R. Kazimierczak, E. Hallmann, J. Lipowski, N. Drela, A. Kowalik, T. Püssa, D. Matt, A. Luik, D. Gozdowski, E. Rembiałkowska, J. Sci. Food Agric. (2014). https://doi.org/10.1002/jsfa.6722

    Article  PubMed  Google Scholar 

  17. G. Lu, Ch.G. Edwards, J.K. Fellman, D.S. Mattinson, J. Navazio, J. Agric. Food Chem. (2003). https://doi.org/10.1021/jf020905r

    Article  PubMed  Google Scholar 

  18. S. Mahnoori, J. Singh, N. Gupta, Pharma Innov. 9(5), 33 (2020)

    CAS  Google Scholar 

  19. T. Kathiravan, S. Nadanasabapathi, R. Kumar, Croat. J. Food Sci. (2015). https://doi.org/10.17508/CJFST.2015.7.1.01

    Article  Google Scholar 

  20. M.R.A. Porto, V.S. Okina, T.C. Pimentel, S.H. Prudencio, Beverages. (2017). https://doi.org/10.3390/beverages3030036

    Article  Google Scholar 

  21. B. Tobolková, J. Durec, E. Belajová, M. Mihalíková, M. Polovka, M. Suhaj, Ľ. Daško, P. Šimko, J. Food Nutr. Res. 52(3), 181 (2013)

    Google Scholar 

  22. F.C. Stintzing, A. Schieber, R. Carle, Eur. Food Res. Technol. (2003). https://doi.org/10.1007/s00217-002-0657-0

    Article  Google Scholar 

  23. D. Chandra, A.J. Choi, Y.P. Kim, J.G. Kim, Ital. J. Food Sci. (2015). https://doi.org/10.14674/1120-1770/ijfs.v188

    Article  Google Scholar 

  24. R.J. Bhardwaj, S. Pandey, Crit. Rev. Food Sci. Nutr. (2011). https://doi.org/10.1080/10408391003710654

    Article  PubMed  Google Scholar 

  25. B. Mgaya-Kilima, S.F. Remberg, B.E. Chove, T. Wicklund, Food Sci. Nutr. (2014). https://doi.org/10.1002/fsn3.174

    Article  PubMed  PubMed Central  Google Scholar 

  26. N. Kayin, D. Atalay, T.T. Akçay, H.S. Erge, J. Food Sci. Technol. (2019). https://doi.org/10.1007/s13197-019-03982-5

    Article  PubMed  Google Scholar 

  27. H.S. Lee, G.A. Coates, LWT-Food. Sci Technol. (2003). https://doi.org/10.1016/S0023-6438(02)00087-7

    Article  Google Scholar 

  28. C.B. Casati, V. Sánchez, R. Baeza, N. Magnani, P. Evelson, M.C. Zamora, Int. J. Food Sci. Tech. (2012). https://doi.org/10.1111/j.1365-2621.2012.03027.x

    Article  Google Scholar 

  29. J. Chandran, P. Nisha, R.S. Singhal, A.B. Pandit, J. Food Sci. Technol. (2014). https://doi.org/10.1007/s13197-012-0741-9

    Article  PubMed  Google Scholar 

  30. S.V. Gokhale, S.S. Lele, Food Sci. Biotechnol. (2011). https://doi.org/10.1007/s10068-011-0132-4

    Article  Google Scholar 

  31. V. Prieto-Santiago, M.M. Cavia, S.R. Alonso-Torre, C. Carrillo, J. Food Sci. Technol. (2020). https://doi.org/10.1007/s13197-020-04363-z

    Article  PubMed  Google Scholar 

  32. H. Habibi, A. Mohammadi, M. Kamankesh, J. Food Meas. Charact. (2018). https://doi.org/10.1007/s11694-017-9630-2

    Article  Google Scholar 

  33. AIJN. Code of practice for evaluation of fruit and vegetable juices (European Fruit Juice Association). https://aijn.eu/en/reference-guidelines-cop. Accessed 12 March 2020

  34. Ch.Y. Lee, R.S. Shallenberger, M.T. Vittum, NY Food Life Sci. 1, 1 (1970)

    Google Scholar 

  35. S.C. Noonan, G.P. Savage, Asia Pac. J. Clin. Nutr. 8(1), 64 (1999)

    Article  CAS  Google Scholar 

  36. Z. Li, Y. Yuan, Y. Yao, X. Wei, T. Yue, J. Meng, Food Control (2019). https://doi.org/10.1016/j.foodcont.2019.03.021

    Article  Google Scholar 

Download references

Acknowledgements

This contribution is the result of the project ITMS 26220220175, “Improvement of nutritional and sensorial parameters of fruity and vegetable drinks via an inert gases application”, supported by the Research and Development Operational Programme funded by the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blanka Tobolková.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Informed consent

All the authors participated/contributed to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tobolková, B., Polovka, M., Daško, Ľ. et al. Evaluation of qualitative changes of apple-beetroot juice during long-term storage at different temperatures. Food Measure 14, 3381–3388 (2020). https://doi.org/10.1007/s11694-020-00592-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00592-0

Keywords

Navigation