Abstract
The huaya seed, considered as fruit waste, represents 40% of the total weight of this tropical fruit that is highly consumed in the Yucatan Peninsula, Mexico. Starch isolated from the fruit seed flour has becoming an alternative to the use of non-conventional sources starches. The present study aims to isolate starch from huaya seed flour and characterize it by its physicochemical, structural, thermal and functional properties. The starch yield was 39.38% containing low levels of protein, lipids, ash and fiber. Starch was characterized by exhibiting an average size of 14.54 µm presenting an oval shape without cracks, high amylose content and high content of resistant starch (RS). Additional analysis shown that starch possesses a more ordered microstructure (C-type starch and ratio 1047/1022 cm−1 and 1022/995 cm−1), high decomposition and gelatinization temperatures, and perhaps these results explain the low swelling capacity of the granule and its low rate of enzymatic hydrolysis. According to the results, this starch owns the potential to be used in non-transparent foods that require high temperatures (such as baking), for the design of products with a lower glycemic index and lower caloric value, and additionally, for the manufacture of bioplastic films for applications as wrappings in food industry.
This is a preview of subscription content, access via your institution.








References
S.M. Londoño-Restrepo, N. Rincón-Londoño, M. Contreras-Padilla, A.A. Acosta-Osorio, L.A. Bello-Pérez, J.C. Lucas-Aguirre, V.D. Quintero, P. Pineda-Gómez, A. del Real-López, M.E. Rodríguez-García, Int. J. Biol. Macromol. 65, 222–228 (2014). https://doi.org/10.1016/j.ijbiomac.2014.01.035
L. de la Torre-Gutiérrez, L.A. Chel-Guerrero, D. Betancur-Ancona, Food Chem. 106(3), 1138–1144 (2008). https://doi.org/10.1016/j.foodchem.2007.07.044
E. Pérez-Pacheco, V.M. Moo-Huchin, R.J. Estrada-León, A. Ortiz-Fernández, L.H. May-Hernández, C.R. Ríos-Soberanis, D. Betancur-Ancona, Carbohydr. Polym. 101, 920–927 (2014). https://doi.org/10.1016/j.carbpol.2013.10.012
L.D. Chel-Guerrero, E. Sauri-Duch, M.C. Fragoso-Serrano, L.J. Pérez-Flores, J.L. Gómez-Olivares, N. Salinas-Arreortua, E.D. Sierra-Palacios, J.A. Mendoza-Espinoza, J. Med. Food 21(7), 734–743 (2018). https://doi.org/10.1089/jmf.2017.0124
J.F. Morton, in Fruits of Warm Climates ed. by J.F. Morton, C.F. Dowling (Florida Flair Books, Miami, 1987), pp. 281–286
V.M. Moo-Huchin, M.I. Moo-Huchin, R.J. Estrada-León, L. Cuevas-Glory, I.A. Estrada-Mota, E. Ortiz-Vázquez, D. Betancur-Ancona, E. Sauri-Duch, Food Chem. 166, 17–22 (2015). https://doi.org/10.1016/j.foodchem.2014.05.127
AOAC, in Official Methods of Analysis of AOAC International, chap. 35, ed. by P. Cunniff (AOAC International, MD, 1997)
L. Tejeda, Chem. Biochem. 47, 279–393 (1992)
T.W. Wajira, S. Ratnayake, R. Hoovera, Starch-Stärke 54(6), 217–234 (2002). https://doi.org/10.1002/1521-379X(200206)54:6<217::AID-STAR217>3.0.CO;2-R
W.R. Morrison, B. Laignelet, J. Cereal Sci. 1(1), 9–20 (1983). https://doi.org/10.1016/S0733-5210(83)80004-6
R.J. Estrada-León, V.M. Moo-Huchin, C.R. Ríos-Soberanis, D. Betancur-Ancona, L.H. May-Hernández, F.A. Carrillo-Sánchez, J.M. Cervantes-Uc, E. Pérez-Pacheco, Food Hydrocoll. 57, 1–9 (2016). https://doi.org/10.1016/j.foodhyd.2016.01.008
S.I. Rafiq, K. Jan, S. Singh, D.C. Saxena, J. Food Sci. Technol. 52(9), 5651–5660 (2015). https://doi.org/10.1007/s13197-014-1692-0
C. Perera, R. Hoover, Food Chem. 64(3), 361–375 (1999). https://doi.org/10.1016/S0308-8146(98)00130-7
L.A. Bello-Perez, E. Agama-Acevedo, D.E. Garcia-Valle, J. Alvarez-Ramirez, Int. J. Biol. Macromol. 122, 405–409 (2019). https://doi.org/10.1016/j.ijbiomac.2018.10.161
H.N. Englyst, S.M. Kingman, J.H. Cummings, Eur. J. Clin. Nutr. 46(Suppl 2), S33–50 (1992)
W. Bergthaller, W. Witt, H.P. Goldau, Starch-Stärke 51(7), 235–242 (1999)
F. Zhu, Food Hydrocoll. 52, 378–392 (2016). https://doi.org/10.1016/j.foodhyd.2015.06.023
S.W. Horstmann, K.M. Lynch, E.K. Arendt, Foods 6(4), 29 (2017)
J.R. Witono, L. Wijaya, D. Tan, A. Miryanti, H. Santoso, Chemeca 2014: processing excellence. Powering Our Future 6, 118–125 (2014)
J. Torruco-Uco, D. Betancur-Ancona, Food Chem. 101(4), 1319–1326 (2007). https://doi.org/10.1016/j.foodchem.2006.03.047
E. González-Reyes, G. Méndez-Montealvo, J. Solorza-Feria, J.F. Toro-Vazquez, L.A. Bello-Pérez, Carbohydr. Polym. 52(3), 297–310 (2003). https://doi.org/10.1016/S0144-8617(02)00291-6
D.S. de Castro, I. dos Santos Moreira, L.M. de Melo Silva, J.P. Lima, W.P. da Silva, J.P. Gomes, R.M.F. de Figueirêdo, Food Res. Int. 124, 181–187 (2019). https://doi.org/10.1016/j.foodres.2018.06.032
N. Lindeboom, P.R. Chang, R.T. Tyler, Starch-Stärke 56(3–4), 89–99 (2004)
J. Swinkels, Starch-Stärke 37(1), 1–5 (1985). https://doi.org/10.1002/star.19850370102
M. Kaur, K.S. Sandhu, S.-T. Lim, Carbohydr. Polym. 79(2), 349–355 (2010). https://doi.org/10.1016/j.carbpol.2009.08.017
R.F. Tester, J. Karkalas, X. Qi, J. Cereal Sci. 39(2), 151–165 (2004). https://doi.org/10.1016/j.jcs.2003.12.001
J.C. Cheftel, H. Cheftel, P. Besancon, Introducción a la Bioquímica y Tecnología de los Alimentos, vol. 2 (Editorial Acribia, 1992)
D.A. Betancur, L.A.C. Ancona, R.I. Guerrero, G. Camelo Matos, D. Ortiz, Starch-Stärke 53(5), 219–226 (2001)
K. Rengsutthi, S. Charoenrein, LWT 44(5), 1309–1313 (2011). https://doi.org/10.1016/j.lwt.2010.12.019
J.E. Fannon, J.M. Shull, J.N. BeMiller, Cereal Chem. 70(5), 611–613 (1993)
C. Sudheesh, K.V. Sunooj, J. George, S. Kumar, V.A. Sajeevkumar, J. Food Meas. Charact. 13(2), 1020–1030 (2019). https://doi.org/10.1007/s11694-018-0016-x
M. Ma, Y. Wang, M. Wang, J.-L. Jane, S.-K. Du, Food Hydrocoll. 63, 249–255 (2017). https://doi.org/10.1016/j.foodhyd.2016.09.004
E. da Rosa Zavareze, C.R. Storck, L.A. de Castro, M.A. Schirmer, A. Dias, Food Chem. 121(2), 358–365 (2010). https://doi.org/10.1016/j.foodchem.2009.12.036
H. Hao, Q. Li, W. Bao, Y. Wu, J. Ouyang, Food Hydrocoll. 84, 193–199 (2018). https://doi.org/10.1016/j.foodhyd.2018.05.031
J. Chen, Y. Liang, X. Li, L. Chen, F. Xie, Carbohydr. Polym. 150, 269–277 (2016). https://doi.org/10.1016/j.carbpol.2016.05.030
N.C. Grace, C.J. Henry, Foods 9(2), 182 (2020)
H. Liu, X. Guo, W. Li, X. Wang, M. Lv, Q. Peng, M. Wang, Carbohydr. Polym. 132, 237–244 (2015). https://doi.org/10.1016/j.carbpol.2015.06.071
H. Yu, L. Cheng, J. Yin, S. Yan, K. Liu, F. Zhang, B. Xu, L. Li, Food Sci. Nutr. 1(4), 273–283 (2013). https://doi.org/10.1002/fsn3.37
J.M. Fang, P.A. Fowler, J. Tomkinson, C.A.S. Hill, Carbohydr. Polym. 47(3), 245–252 (2002). https://doi.org/10.1016/S0144-8617(01)00187-4
H. Chi, K. Xu, D. Xue, C. Song, W. Zhang, P. Wang, Food Res. Int. 40(2), 232–238 (2007). https://doi.org/10.1016/j.foodres.2006.09.013
S. Wang, C. Liu, S. Wang, LWT 73, 663–669 (2016). https://doi.org/10.1016/j.lwt.2016.07.012
F. Jiang, C. Du, Y. Guo, J. Fu, W. Jiang, S.-K. Du, Food Hydrocoll. 101, 105515 (2020). https://doi.org/10.1016/j.foodhyd.2019.105515
L.A. Bello-Pérez, A. De Francisco, E. Agama-Acevedo, F. Gutierrez-Meraz, F.J.L. García-Suarez, Food Sci. Technol. Int. 11(5), 367–372 (2005). https://doi.org/10.1177/1082013205058409
Z. Zhang, A.S.M. Saleh, H. Wu, M. Gou, Y. Liu, L. Jing, K. Zhao, C. Su, B. Zhang, W. Li, Starch-Stärke 72(1–2), 1900122 (2020). https://doi.org/10.1002/star.201900122
J.L. Jane, Z. Ao, S.A. Duvick, M. Wiklund, S.-H. Yoo, K.-S. Wong, C. Gardner, J. Appl. Glycosci. 50(2), 167–172 (2003). https://doi.org/10.5458/jag.50.167
Q. Yang, W. Zhang, Y. Luo, J. Li, J. Gao, P. Yang, X. Gao, B. Feng, Food Chem. 288, 283–290 (2019). https://doi.org/10.1016/j.foodchem.2019.02.134
A. Ayucitra, Int. J. Chem. Eng. Appl. 3, 156 (2012)
M. Hernández-Medina, J.G. Torruco-Uco, L. Chel-Guerrero, D. Betancur-Ancona, Food Sci. Technol. 28, 718–726 (2008). https://doi.org/10.1590/S0101-20612008000300031
G. Chao, J. Gao, R. Liu, L. Wang, C. Li, Y. Wang, Y. Qu, B. Feng, Starch-Stärke 66(11–12), 1005–1012 (2014). https://doi.org/10.1002/star.201400018
Acknowledgements
The authors would like to express their gratitude to the Tecnológico Nacional de México (TecNM), for the financial support for the project 5697.19-P. Technical support is acknowledged to MSc José Rodriguez-Laviada.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no conflict of interest to declare.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Moo-Huchin, V.M., Ac-Chim, D.M., Chim-Chi, Y.A. et al. Huaya (Melicoccus bijugatus) seed flour as a new source of starch: physicochemical, morphological, thermal and functional characterization. Food Measure 14, 3299–3309 (2020). https://doi.org/10.1007/s11694-020-00573-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11694-020-00573-3
Keywords
- Starch
- Physicochemical properties
- Tropical fruit
- Melicoccus bijugatus
- Huaya