Skip to main content

Huaya (Melicoccus bijugatus) seed flour as a new source of starch: physicochemical, morphological, thermal and functional characterization

Abstract

The huaya seed, considered as fruit waste, represents 40% of the total weight of this tropical fruit that is highly consumed in the Yucatan Peninsula, Mexico. Starch isolated from the fruit seed flour has becoming an alternative to the use of non-conventional sources starches. The present study aims to isolate starch from huaya seed flour and characterize it by its physicochemical, structural, thermal and functional properties. The starch yield was 39.38% containing low levels of protein, lipids, ash and fiber. Starch was characterized by exhibiting an average size of 14.54 µm presenting an oval shape without cracks, high amylose content and high content of resistant starch (RS). Additional analysis shown that starch possesses a more ordered microstructure (C-type starch and ratio 1047/1022 cm−1 and 1022/995 cm−1), high decomposition and gelatinization temperatures, and perhaps these results explain the low swelling capacity of the granule and its low rate of enzymatic hydrolysis. According to the results, this starch owns the potential to be used in non-transparent foods that require high temperatures (such as baking), for the design of products with a lower glycemic index and lower caloric value, and additionally, for the manufacture of bioplastic films for applications as wrappings in food industry.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. S.M. Londoño-Restrepo, N. Rincón-Londoño, M. Contreras-Padilla, A.A. Acosta-Osorio, L.A. Bello-Pérez, J.C. Lucas-Aguirre, V.D. Quintero, P. Pineda-Gómez, A. del Real-López, M.E. Rodríguez-García, Int. J. Biol. Macromol. 65, 222–228 (2014). https://doi.org/10.1016/j.ijbiomac.2014.01.035

    Article  CAS  PubMed  Google Scholar 

  2. L. de la Torre-Gutiérrez, L.A. Chel-Guerrero, D. Betancur-Ancona, Food Chem. 106(3), 1138–1144 (2008). https://doi.org/10.1016/j.foodchem.2007.07.044

    Article  CAS  Google Scholar 

  3. E. Pérez-Pacheco, V.M. Moo-Huchin, R.J. Estrada-León, A. Ortiz-Fernández, L.H. May-Hernández, C.R. Ríos-Soberanis, D. Betancur-Ancona, Carbohydr. Polym. 101, 920–927 (2014). https://doi.org/10.1016/j.carbpol.2013.10.012

    Article  CAS  PubMed  Google Scholar 

  4. L.D. Chel-Guerrero, E. Sauri-Duch, M.C. Fragoso-Serrano, L.J. Pérez-Flores, J.L. Gómez-Olivares, N. Salinas-Arreortua, E.D. Sierra-Palacios, J.A. Mendoza-Espinoza, J. Med. Food 21(7), 734–743 (2018). https://doi.org/10.1089/jmf.2017.0124

    Article  CAS  PubMed  Google Scholar 

  5. J.F. Morton, in Fruits of Warm Climates ed. by J.F. Morton, C.F. Dowling (Florida Flair Books, Miami, 1987), pp. 281–286

    Google Scholar 

  6. V.M. Moo-Huchin, M.I. Moo-Huchin, R.J. Estrada-León, L. Cuevas-Glory, I.A. Estrada-Mota, E. Ortiz-Vázquez, D. Betancur-Ancona, E. Sauri-Duch, Food Chem. 166, 17–22 (2015). https://doi.org/10.1016/j.foodchem.2014.05.127

    Article  CAS  PubMed  Google Scholar 

  7. AOAC, in Official Methods of Analysis of AOAC International, chap. 35, ed. by P. Cunniff (AOAC International, MD, 1997)

  8. L. Tejeda, Chem. Biochem. 47, 279–393 (1992)

    Google Scholar 

  9. T.W. Wajira, S. Ratnayake, R. Hoovera, Starch-Stärke 54(6), 217–234 (2002). https://doi.org/10.1002/1521-379X(200206)54:6<217::AID-STAR217>3.0.CO;2-R

    Article  Google Scholar 

  10. W.R. Morrison, B. Laignelet, J. Cereal Sci. 1(1), 9–20 (1983). https://doi.org/10.1016/S0733-5210(83)80004-6

    Article  CAS  Google Scholar 

  11. R.J. Estrada-León, V.M. Moo-Huchin, C.R. Ríos-Soberanis, D. Betancur-Ancona, L.H. May-Hernández, F.A. Carrillo-Sánchez, J.M. Cervantes-Uc, E. Pérez-Pacheco, Food Hydrocoll. 57, 1–9 (2016). https://doi.org/10.1016/j.foodhyd.2016.01.008

    Article  CAS  Google Scholar 

  12. S.I. Rafiq, K. Jan, S. Singh, D.C. Saxena, J. Food Sci. Technol. 52(9), 5651–5660 (2015). https://doi.org/10.1007/s13197-014-1692-0

    Article  CAS  PubMed  Google Scholar 

  13. C. Perera, R. Hoover, Food Chem. 64(3), 361–375 (1999). https://doi.org/10.1016/S0308-8146(98)00130-7

    Article  CAS  Google Scholar 

  14. L.A. Bello-Perez, E. Agama-Acevedo, D.E. Garcia-Valle, J. Alvarez-Ramirez, Int. J. Biol. Macromol. 122, 405–409 (2019). https://doi.org/10.1016/j.ijbiomac.2018.10.161

    Article  CAS  PubMed  Google Scholar 

  15. H.N. Englyst, S.M. Kingman, J.H. Cummings, Eur. J. Clin. Nutr. 46(Suppl 2), S33–50 (1992)

    PubMed  Google Scholar 

  16. W. Bergthaller, W. Witt, H.P. Goldau, Starch-Stärke 51(7), 235–242 (1999)

    Article  CAS  Google Scholar 

  17. F. Zhu, Food Hydrocoll. 52, 378–392 (2016). https://doi.org/10.1016/j.foodhyd.2015.06.023

    Article  CAS  Google Scholar 

  18. S.W. Horstmann, K.M. Lynch, E.K. Arendt, Foods 6(4), 29 (2017)

    Article  Google Scholar 

  19. J.R. Witono, L. Wijaya, D. Tan, A. Miryanti, H. Santoso, Chemeca 2014: processing excellence. Powering Our Future 6, 118–125 (2014)

    Google Scholar 

  20. J. Torruco-Uco, D. Betancur-Ancona, Food Chem. 101(4), 1319–1326 (2007). https://doi.org/10.1016/j.foodchem.2006.03.047

    Article  CAS  Google Scholar 

  21. E. González-Reyes, G. Méndez-Montealvo, J. Solorza-Feria, J.F. Toro-Vazquez, L.A. Bello-Pérez, Carbohydr. Polym. 52(3), 297–310 (2003). https://doi.org/10.1016/S0144-8617(02)00291-6

    Article  Google Scholar 

  22. D.S. de Castro, I. dos Santos Moreira, L.M. de Melo Silva, J.P. Lima, W.P. da Silva, J.P. Gomes, R.M.F. de Figueirêdo, Food Res. Int. 124, 181–187 (2019). https://doi.org/10.1016/j.foodres.2018.06.032

    Article  CAS  PubMed  Google Scholar 

  23. N. Lindeboom, P.R. Chang, R.T. Tyler, Starch-Stärke 56(3–4), 89–99 (2004)

    Article  CAS  Google Scholar 

  24. J. Swinkels, Starch-Stärke 37(1), 1–5 (1985). https://doi.org/10.1002/star.19850370102

    Article  CAS  Google Scholar 

  25. M. Kaur, K.S. Sandhu, S.-T. Lim, Carbohydr. Polym. 79(2), 349–355 (2010). https://doi.org/10.1016/j.carbpol.2009.08.017

    Article  CAS  Google Scholar 

  26. R.F. Tester, J. Karkalas, X. Qi, J. Cereal Sci. 39(2), 151–165 (2004). https://doi.org/10.1016/j.jcs.2003.12.001

    Article  CAS  Google Scholar 

  27. J.C. Cheftel, H. Cheftel, P. Besancon, Introducción a la Bioquímica y Tecnología de los Alimentos, vol. 2 (Editorial Acribia, 1992)

  28. D.A. Betancur, L.A.C. Ancona, R.I. Guerrero, G. Camelo Matos, D. Ortiz, Starch-Stärke 53(5), 219–226 (2001)

    Article  Google Scholar 

  29. K. Rengsutthi, S. Charoenrein, LWT 44(5), 1309–1313 (2011). https://doi.org/10.1016/j.lwt.2010.12.019

    Article  CAS  Google Scholar 

  30. J.E. Fannon, J.M. Shull, J.N. BeMiller, Cereal Chem. 70(5), 611–613 (1993)

    Google Scholar 

  31. C. Sudheesh, K.V. Sunooj, J. George, S. Kumar, V.A. Sajeevkumar, J. Food Meas. Charact. 13(2), 1020–1030 (2019). https://doi.org/10.1007/s11694-018-0016-x

    Article  Google Scholar 

  32. M. Ma, Y. Wang, M. Wang, J.-L. Jane, S.-K. Du, Food Hydrocoll. 63, 249–255 (2017). https://doi.org/10.1016/j.foodhyd.2016.09.004

    Article  CAS  Google Scholar 

  33. E. da Rosa Zavareze, C.R. Storck, L.A. de Castro, M.A. Schirmer, A. Dias, Food Chem. 121(2), 358–365 (2010). https://doi.org/10.1016/j.foodchem.2009.12.036

    Article  CAS  Google Scholar 

  34. H. Hao, Q. Li, W. Bao, Y. Wu, J. Ouyang, Food Hydrocoll. 84, 193–199 (2018). https://doi.org/10.1016/j.foodhyd.2018.05.031

    Article  CAS  Google Scholar 

  35. J. Chen, Y. Liang, X. Li, L. Chen, F. Xie, Carbohydr. Polym. 150, 269–277 (2016). https://doi.org/10.1016/j.carbpol.2016.05.030

    Article  CAS  PubMed  Google Scholar 

  36. N.C. Grace, C.J. Henry, Foods 9(2), 182 (2020)

    Article  Google Scholar 

  37. H. Liu, X. Guo, W. Li, X. Wang, M. Lv, Q. Peng, M. Wang, Carbohydr. Polym. 132, 237–244 (2015). https://doi.org/10.1016/j.carbpol.2015.06.071

    Article  CAS  PubMed  Google Scholar 

  38. H. Yu, L. Cheng, J. Yin, S. Yan, K. Liu, F. Zhang, B. Xu, L. Li, Food Sci. Nutr. 1(4), 273–283 (2013). https://doi.org/10.1002/fsn3.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. J.M. Fang, P.A. Fowler, J. Tomkinson, C.A.S. Hill, Carbohydr. Polym. 47(3), 245–252 (2002). https://doi.org/10.1016/S0144-8617(01)00187-4

    Article  CAS  Google Scholar 

  40. H. Chi, K. Xu, D. Xue, C. Song, W. Zhang, P. Wang, Food Res. Int. 40(2), 232–238 (2007). https://doi.org/10.1016/j.foodres.2006.09.013

    Article  CAS  Google Scholar 

  41. S. Wang, C. Liu, S. Wang, LWT 73, 663–669 (2016). https://doi.org/10.1016/j.lwt.2016.07.012

    Article  CAS  Google Scholar 

  42. F. Jiang, C. Du, Y. Guo, J. Fu, W. Jiang, S.-K. Du, Food Hydrocoll. 101, 105515 (2020). https://doi.org/10.1016/j.foodhyd.2019.105515

    Article  CAS  Google Scholar 

  43. L.A. Bello-Pérez, A. De Francisco, E. Agama-Acevedo, F. Gutierrez-Meraz, F.J.L. García-Suarez, Food Sci. Technol. Int. 11(5), 367–372 (2005). https://doi.org/10.1177/1082013205058409

    Article  CAS  Google Scholar 

  44. Z. Zhang, A.S.M. Saleh, H. Wu, M. Gou, Y. Liu, L. Jing, K. Zhao, C. Su, B. Zhang, W. Li, Starch-Stärke 72(1–2), 1900122 (2020). https://doi.org/10.1002/star.201900122

    Article  CAS  Google Scholar 

  45. J.L. Jane, Z. Ao, S.A. Duvick, M. Wiklund, S.-H. Yoo, K.-S. Wong, C. Gardner, J. Appl. Glycosci. 50(2), 167–172 (2003). https://doi.org/10.5458/jag.50.167

    Article  CAS  Google Scholar 

  46. Q. Yang, W. Zhang, Y. Luo, J. Li, J. Gao, P. Yang, X. Gao, B. Feng, Food Chem. 288, 283–290 (2019). https://doi.org/10.1016/j.foodchem.2019.02.134

    Article  CAS  PubMed  Google Scholar 

  47. A. Ayucitra, Int. J. Chem. Eng. Appl. 3, 156 (2012)

    CAS  Google Scholar 

  48. M. Hernández-Medina, J.G. Torruco-Uco, L. Chel-Guerrero, D. Betancur-Ancona, Food Sci. Technol. 28, 718–726 (2008). https://doi.org/10.1590/S0101-20612008000300031

    Article  Google Scholar 

  49. G. Chao, J. Gao, R. Liu, L. Wang, C. Li, Y. Wang, Y. Qu, B. Feng, Starch-Stärke 66(11–12), 1005–1012 (2014). https://doi.org/10.1002/star.201400018

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the Tecnológico Nacional de México (TecNM), for the financial support for the project 5697.19-P. Technical support is acknowledged to MSc José Rodriguez-Laviada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Pérez-Pacheco.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moo-Huchin, V.M., Ac-Chim, D.M., Chim-Chi, Y.A. et al. Huaya (Melicoccus bijugatus) seed flour as a new source of starch: physicochemical, morphological, thermal and functional characterization. Food Measure 14, 3299–3309 (2020). https://doi.org/10.1007/s11694-020-00573-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00573-3

Keywords

  • Starch
  • Physicochemical properties
  • Tropical fruit
  • Melicoccus bijugatus
  • Huaya