Skip to main content

Advertisement

Log in

Physicochemical characteristics and rheological behaviour of some fruit juices and their concentrates

  • Review Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Fruit juices and their concentrates are popular drinks consumed by people of all ages for their sensory and nutritional qualities. In this paper, the physicochemical and rheological properties of african star apple, apple, apricot, banana, cherry, goldenberry, grape, guava, mango, medlar, orange, peach, pear, plum, pomegranate and pomelo juices, and their concentrates were reviewed. The selection of cultivars is a critical factor for the production of juices rich in healthy compounds and the quality of fruit juice strongly depends on processing technology. In summary, carbohydrates (fructose, glucose, sorbitol and sucrose), organic acids (ascorbic, citric, malic and shikimic acids), amino acids (asparagine, proline, glycine, serine, methionine and alanine) and phenolic compounds (catechin, chlorogenic acid and rutin) are among the significant constituents of fruit juices, and their concentrates. Also, the content of organic acids in fruit juices not only influence their taste and flavour but also their nutrition, stability, acceptability and keeping quality. Understanding of rheological properties of fruit juice is essential for quality control, process engineering application (designing and selection of proper equipment including heat exchangers, transport systems, evaporators and pumps), calculating energy usage and power requirement for mixing. The rheological behaviour of fruit juices and concentrates can be described by different rheological models depending on the nature of the juices. Several investigators used and suggested the Newtonian and Herschel-Bulkley models describe the rheological behaviour of various fruit juices. The apparent viscosity of fruit juice decreased considerably at higher temperatures. The effect of temperature on the apparent viscosity is generally expressed by the Arrhenius relationship and the activation energy (Ea) for fruit juices flow increased with the concentration of the juices. Higher activation energy means that the apparent viscosity is relatively more sensitive to temperature change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. N. Sinha, J. Sidhu, J. Barta, J. Wu, M.P. Cano, Handbook of Fruits and Fruit Processing (Wiley, New York, 2012)

    Google Scholar 

  2. A. Versari, G.P. Parpinello, A.U. Mattioli, S. Galassi, Food Chem 108, 334–340 (2008)

    CAS  Google Scholar 

  3. O. Awolu, T. Aderinola, I. Adebayo, J. Food Process. Technol. 4, 1–6 (2013)

    Google Scholar 

  4. F. Salehi, Int. J. Fruit Sci. 1, 1–20 (2020)

    Google Scholar 

  5. F. Salehi, Int. J. Fruit Sci. 1, 1–15 (2019)

    Google Scholar 

  6. Y. Huang, B.A. Rasco, A.G. Cavinato, Chapter 13—fruit juices, in Infrared Spectroscopy for Food Quality Analysis and Control, ed. by D.-W. Sun (Academic Press, San Diego, 2009), pp. 355–375

    Google Scholar 

  7. S. Keshani, A.L. Chuah, A. Russly, Int. Food Res. J. 19, 553–562 (2012)

    CAS  Google Scholar 

  8. S. Li, Y. Shen, D. Liu, L. Fan, Z. Tan, Chem. Eng. Res. Des. 93, 773–778 (2015)

    CAS  Google Scholar 

  9. F. Salehi, Food Bioprod. Process. 92, 161–177 (2014)

    CAS  Google Scholar 

  10. F. Salehi, Food Industry Machines and Equipment (Bu-Ali Sina University Press, Hamedan, 2020)

    Google Scholar 

  11. T.E. Moussa-Ayoub, H. Jaeger, K. Youssef, D. Knorr, S. El-Samahy, L.W. Kroh, S. Rohn, Food Chem. 210, 249–261 (2016)

    CAS  PubMed  Google Scholar 

  12. F. Salehi, S. Aghajanzadeh, Trends Food Sci. Technol. 95, 162–172 (2020)

    CAS  Google Scholar 

  13. F. Salehi, Nutrire 45, 1–10 (2020)

    Google Scholar 

  14. F. Salehi, M. Kashaninejad, A. Tadayyon, F. Arabameri, J. Food Sci. Technol. 52, 5220–5227 (2015)

    CAS  PubMed  Google Scholar 

  15. M. Özen, N. Özdemir, B. Ertekin Filiz, N.H. Budak, T. Kök-Taş, Food Chem. 309, 125664 (2020)

    PubMed  Google Scholar 

  16. C. Buvé, B.T. Kebede, C. De Batselier, C. Carrillo, H.T.T. Pham, M. Hendrickx, T. Grauwet, A. Van Loey, J. Food Eng. 216, 42–51 (2018)

    Google Scholar 

  17. M. Dak, R. Verma, S. Jaaffrey, J. Food Eng. 80, 1011–1015 (2007)

    Google Scholar 

  18. F. Salehi, M. Kashaninejad, V. Behshad, Int. J. Biol. Macromol. 67, 16–21 (2014)

    CAS  PubMed  Google Scholar 

  19. M. Ramzi, M. Kashaninejad, F. Salehi, A.R. Sadeghi Mahoonak, S.M. Ali Razavi, Food Biosci. 9, 60–67 (2015)

    Google Scholar 

  20. K.E. Khalil, P. Ramakrishna, A.M. Nanjundaswamy, M.V. Patwardhan, J. Food Eng. 10, 231–240 (1989)

    Google Scholar 

  21. E. Álvarez, M. Cancela, R. Maceiras, Int. J. Food Prop. 9, 135–146 (2006)

    Google Scholar 

  22. M. Sengül, M. Fatih Ertugay, M. Sengül, Y. Yüksel, Int. J. Food Prop. 10, 39–46 (2007)

    Google Scholar 

  23. L. Diamante, M. Umemoto, Int. J. Food Prop. 18, 1191–1210 (2015)

    Google Scholar 

  24. C. Haminiuk, M. Sierakowski, D. Izidoro, M. Masson, Braz. J. Food Technol 9, 291–296 (2006)

    Google Scholar 

  25. N. Amusa, O. Ashaye, M. Oladapo, Afr. J. Biotechnol. 2, 56–59 (2003)

    CAS  Google Scholar 

  26. O. Jayeoba, M. Ige, J. Omolaiye, S. Gbadamosi, R. Ogunbanjo, I. Abiola, ASSET: Int. J. (Ser. A) 7, 37–42 (2010)

    Google Scholar 

  27. F. Salehi, J. Food Meas. Charact. 11, 2006–2012 (2017)

    Google Scholar 

  28. F. Salehi, M. Kashaninejad, N. Alipour, Innov. Food Sci. Technol 3, 34–47 (2016)

    Google Scholar 

  29. F. Salehi, Int. J. Fruit Sci., 1–17 (2020). https://doi.org/10.1080/15538362.2019.1616243

  30. M. Persic, M. Mikulic-Petkovsek, A. Slatnar, R. Veberic, LWT-Food Sci. Technol. 82, 23–31 (2017)

    CAS  Google Scholar 

  31. J. Markowski, A. Baron, J.-M. Le Quéré, W. Płocharski, LWT-Food Sci. Technol. 62, 813–820 (2015)

    CAS  Google Scholar 

  32. G. Ravn-Haren, L.O. Dragsted, T. Buch-Andersen, E.N. Jensen, R.I. Jensen, M. Németh-Balogh, B. Paulovicsová, A. Bergström, A. Wilcks, T.R. Licht, J. Markowski, S. Bügel, Eur. J. Nutr. 52, 1875–1889 (2013)

    CAS  PubMed  Google Scholar 

  33. L. Paravisini, D.G. Peterson, Food Chem. 245, 1010–1017 (2018)

    CAS  PubMed  Google Scholar 

  34. D.E. Salinas, A. Garvin, R. Ibarz, A. Ibarz, LWT-. Food Sci. Technol. 116, 108456 (2019)

    CAS  Google Scholar 

  35. S. Tajchakavit, J.I. Boye, D. Bélanger, R. Couture, Food Res. Int. 34, 431–440 (2001)

    CAS  Google Scholar 

  36. W.C. Lee, S. Yusof, N.S.A. Hamid, B.S. Baharin, LWT-Food Sci. Technol. 40, 1755–1764 (2007)

    CAS  Google Scholar 

  37. F. Salehi, Z. Abbasi Shahkoh, M. Godarzi, J. Innov. Food Sci. Technol. 7, 65–76 (2015)

    Google Scholar 

  38. M. Aider, D. de Halleux, LWT-Food Sci. Technol. 41, 1768–1775 (2008)

    CAS  Google Scholar 

  39. Y. Yu, G. Xiao, J. Wu, Y. Xu, D. Tang, Y. Chen, J. Wen, M. Fu, Innov. Food Sci. Emerg. Technol 18, 95–100 (2013)

    CAS  Google Scholar 

  40. G. Aurore, B. Parfait, L. Fahrasmane, Trends Food Sci. Technol. 20, 78–91 (2009)

    CAS  Google Scholar 

  41. D. Mohapatra, S. Mishra, C.B. Singh, D.S. Jayas, Food Bioprocess Technol. 4, 327–339 (2011)

    Google Scholar 

  42. N. Dhamsaniya, A. Varshney, J. Food Process. Technol. 4, 1–5 (2013)

    Google Scholar 

  43. S.T. Sagu, E.J. Nso, S. Karmakar, S. De, Food Chem. 151, 182–190 (2014)

    CAS  PubMed  Google Scholar 

  44. W.C. Lee, S. Yusof, N.S.A. Hamid, B.S. Baharin, J. Food Eng. 73, 55–63 (2006)

    CAS  Google Scholar 

  45. S.J. Park, J.I. Lee, J. Park, J. Food Sci. 67, 1827–1834 (2002)

    CAS  Google Scholar 

  46. D. Kincal, W.S. Hill, M. Balaban, K. Portier, C.A. Sims, C. Wei, M. Marshall, J. Food Sci. 71, C338–C344 (2006)

    CAS  Google Scholar 

  47. A.F. Iezzoni, Cherries, in Temperate Fruit Crop Breeding: Germplasm to Genomics, ed. by J.F. Hancock (Springer, Dordrecht, 2008), pp. 151–175

    Google Scholar 

  48. S. Chockchaisawasdee, J.B. Golding, Q.V. Vuong, K. Papoutsis, C.E. Stathopoulos, Trends Food Sci. Technol. 55, 72–83 (2016)

    CAS  Google Scholar 

  49. E. Schüller, H. Halbwirth, M. Mikulic-Petkovsek, A. Slatnar, R. Veberic, A. Forneck, K. Stich, A. Spornberger, Food Chem. 173, 935–942 (2015)

    PubMed  Google Scholar 

  50. L. Juszczak, T. Fortuna, Int. Agrophys. 18, 17–22 (2004)

    Google Scholar 

  51. K.B. Belibağli, A.C. Dalgic, Int. J. Food Sci. Technol. 42, 773–776 (2007)

    Google Scholar 

  52. A. Can Karaca, O. Guzel, M.M. Ak, J. Sci. Food Agric. 96, 449–455 (2016)

    PubMed  Google Scholar 

  53. F. Will, P. Hilsendegen, D. Bonerz, C.-D. Patz, H. Dietrich, J. Appl. Bot. Food Qual. 79, 12–16 (2005)

    CAS  Google Scholar 

  54. A.M. Sharoba, M.F. Ramadan, J. Food Process. Preserv. 35, 201–219 (2011)

    CAS  Google Scholar 

  55. M.F. Ramadan, M.Z. Sitohy, J.-T. Moersel, Eur. Food Res. Technol. 226, 1445–1458 (2008)

    CAS  Google Scholar 

  56. D. Dag, M. Kilercioglu, M.H. Oztop, LWT-Food Sci. Technol. 83, 86–94 (2017)

    CAS  Google Scholar 

  57. T. Erkaya, E. Dağdemir, M. Şengül, Food Res. Int. 45, 331–335 (2012)

    CAS  Google Scholar 

  58. E. Capanoglu, R.C.H. de Vos, R.D. Hall, D. Boyacioglu, J. Beekwilder, Food Chem. 139, 521–526 (2013)

    CAS  PubMed  Google Scholar 

  59. O. Gürbüz, D. Göçmen, F. Dagˇdelen, M. Gürsoy, S. Aydin, İ. Şahin, L. Büyükuysal, M. Usta, Food Chem. 100, 518–525 (2007)

    Google Scholar 

  60. M.B.M. De Castilhos, L.F.L. Betiol, G.R. de Carvalho, J. Telis-Romero, Food Res. Int. 105, 905–912 (2018)

    PubMed  Google Scholar 

  61. H. Tavakolipour, A. Kalbasi-Ashtari, J. Food Sci. Technol. 40, 129–137 (2013)

    Google Scholar 

  62. S.A. Tomas, E. Bosquez-Molina, S. Stolik, F. Sanchez, J. Phys. IV Fr. 125, 889–892 (2005)

    CAS  Google Scholar 

  63. L.A. Forato, D. de Britto, J.S. de Rizzo, T.A. Gastaldi, O.B.G. Assis, Food Packag. Shelf Life 5, 68–74 (2015)

    Google Scholar 

  64. S.B. Murmu, H.N. Mishra, LWT 80, 271–279 (2017)

    CAS  Google Scholar 

  65. C.I. García-Betanzos, H. Hernández-Sánchez, T.F. Bernal-Couoh, D. Quintanar-Guerrero, M.D.L.L. Zambrano-Zaragoza, Food Res. Int. 101, 218–227 (2017)

    PubMed  Google Scholar 

  66. S.B. Murmu, H.N. Mishra, Food Chem. 245, 820–828 (2018)

    CAS  PubMed  Google Scholar 

  67. E.T.S. Caramês, P.D. Alamar, R.J. Poppi, J.A.L. Pallone, J. Food Compos. Anal 56, 41–46 (2017)

    Google Scholar 

  68. B.S. Zainal, R. Abdul Rahman, A.B. Ariff, B.N. Saari, B.A. Asbi, J. Food Eng. 43, 55–59 (2000)

    Google Scholar 

  69. C. Lamo, N.C. Shahi, A. Singh, A.K. Singh, LWT 112, 108253 (2019)

    CAS  Google Scholar 

  70. L.H. Cheng, C.Y. Soh, S.C. Liew, F.F. Teh, Food Chem. 104, 1396–1401 (2007)

    CAS  Google Scholar 

  71. S.S. Campoli, M.L. Rojas, J.E.P.G. do Amaral, S.G. Canniatti-Brazaca, P.E.D. Augusto, Food Chem. 268, 594–601 (2018)

    CAS  PubMed  Google Scholar 

  72. K. Bandyopadhyay, C. Chakraborty, S. Bhattacharyya, J. Acad. Ind. Res. 2, 661–664 (2014)

    Google Scholar 

  73. M.L. Sudha, K. Indumathi, M.S. Sumanth, S. Rajarathnam, M.N. Shashirekha, J. Food Meas. Charact. 9, 382–388 (2015)

    Google Scholar 

  74. H. Hacıseferogˇulları, M. Özcan, M.H. Sonmete, O. Özbek, J Food Eng 69, 1–7 (2005)

    Google Scholar 

  75. F. Salehi, M. Kashaninejad, Iran. J. Food Sci. Technol. 13, 49–57 (2016)

    Google Scholar 

  76. R.H. Glew, F.A. Ayaz, C. Sanz, D. VanderJagt, H.-S. Huang, L.-T. Chuang, M. Strnad, Food Chem. 83, 363–369 (2003)

    CAS  Google Scholar 

  77. R.H. Glew, F.A. Ayaz, C. Sanz, D. VanderJagt, H. Huang, L. Chuang, M. Strnad, Eur. Food Res. Technol. 216, 390–394 (2003)

    CAS  Google Scholar 

  78. L.Y. Niu, J.H. Wu, X.J. Liao, F. Chen, Z.F. Wang, G.H. Zhao, Agric. Sci. China 7, 41–47 (2008)

    CAS  Google Scholar 

  79. J. Fernandez-Lopez, E. Sendra-Nadal, C. Navarro, E. Sayas, M. Viuda-Martos, J.A. Perez-Alvarez, Int. J. Food Sci. Technol. 44, 748–756 (2009)

    CAS  Google Scholar 

  80. A.M. Goula, K.G. Adamopoulos, Innov. Food Sci. Emerg. Technol 11, 342–351 (2010)

    CAS  Google Scholar 

  81. L. Paravisini, D.G. Peterson, Food Chem. 289, 320–327 (2019)

    CAS  PubMed  Google Scholar 

  82. J. Ahmed, Int. J. Food Sci. Technol. 39, 325–330 (2004)

    CAS  Google Scholar 

  83. A. Ibarz, C. Gonzalez, S. Esplugas, J. Food Eng. 21, 485–494 (1994)

    Google Scholar 

  84. L. Dahdouh, C. Wisniewski, J. Ricci, L. Vachoud, M. Dornier, M. Delalonde, J. Food Eng. 174, 15–20 (2016)

    CAS  Google Scholar 

  85. M.L. Rojas, T.S. Leite, M. Cristianini, I.D. Alvim, P.E.D. Augusto, Food Res. Int. 82, 22–33 (2016)

    CAS  Google Scholar 

  86. M.A. Magerramov, A.I. Abdulagatov, N.D. Azizov, I.M. Abdulagatov, J. Food Eng. 80, 476–489 (2007)

    CAS  Google Scholar 

  87. D. Valero, H.M. Díaz-Mula, P.J. Zapata, F. Guillén, D. Martínez-Romero, S. Castillo, M. Serrano, Postharvest. Biol. Technol. 77, 1–6 (2013)

    CAS  Google Scholar 

  88. C.H. Crisosto, D. Garner, G.M. Crisosto, E. Bowerman, Postharvest. Biol. Technol. 34, 237–244 (2004)

    Google Scholar 

  89. H.L. Eum, D.F. Hwang, M. Linke, S.L. Lee, M. Zude, Eur. Food Res. Technol. 229, 427–434 (2009)

    CAS  Google Scholar 

  90. M.L.L. Navarro-Tarazaga, R. Sothornvit, M.B. Pérez-Gago, J. Agric. Food Chem. 56, 9502–9509 (2008)

    CAS  PubMed  Google Scholar 

  91. F. Will, H. Dietrich, Eur. Food Res. Technol. 223, 419–425 (2006)

    CAS  Google Scholar 

  92. H.A.A. Essa, Pol. J. Food Nutr. Sci. 3, 13–19 (2002)

    Google Scholar 

  93. M. Valero, S. Vegara, N. Martí, D. Saura, J. Food Process. Technol. 5, 1–6 (2014)

    Google Scholar 

  94. P. Putnik, Ž. Kresoja, T. Bosiljkov, A.R. Jambrak, F.J. Barba, J.M. Lorenzo, S. Roohinejad, D. Granato, I. Žuntar, D.B. Kovačević, Food Chem. 279, 150–161 (2019)

    CAS  PubMed  Google Scholar 

  95. S. Bodbodak, M. Kashaninejad, J. Hesari, S. Razavi, J. Agric. Sci. Technol. 15, 961–971 (2013)

    Google Scholar 

  96. A. Altan, M. Maskan, J. Texture Stud. 36, 68–77 (2005)

    Google Scholar 

  97. T.G. Chuah, S. Keshani, N.L. Chin, M.C. Lau, D.S. Chin, Int. J. Food Eng. 4, 1–12 (2008)

  98. T. Turk, The effect of low temperature storage treatment on color changes in pomelo (Citrus grandis L. Osbeck). Malaysia: University Putra Malaysia, in, MSc thesis (2002)

  99. N. Chin, S. Chan, Y. Yusof, T. Chuah, R. Talib, J. Food Eng. 93, 134–140 (2009)

    CAS  Google Scholar 

  100. C. Dani, L.S. Oliboni, R. Vanderlinde, D. Pra, J.F. Dias, M.L. Yoneama, D. Bonatto, M. Salvador, J.A. Henriques, J. Med. Food 12, 188–192 (2009)

    CAS  PubMed  Google Scholar 

  101. E. Chuku, N. Akani, Int. J. Biol. Med. Res. 1, 1–8 (2015)

    Google Scholar 

  102. J. Wang, Q. Liu, B. Xie, Z. Sun, Ultrason. Sonochem. 64, 105000 (2020)

    CAS  PubMed  Google Scholar 

  103. G.R. Chegini, B. Ghobadian, Dry. Technol. 23, 657–668 (2005)

    CAS  Google Scholar 

  104. M. Saeeduddin, M. Abid, S. Jabbar, B. Hu, M.M. Hashim, M.A. Khan, M. Xie, T. Wu, X. Zeng, Int. J. Food Sci. Technol. 51, 1552–1559 (2016)

    CAS  Google Scholar 

  105. H. Aziztaemeh, A.A. Kazemi, J. Razavi, Iran. J. Food Sci. Technol. 2, 59–65 (2005)

    Google Scholar 

  106. D. Bonerz, K. Würth, H. Dietrich, F. Will, Eur. Food Res. Technol. 224, 355–364 (2007)

    CAS  Google Scholar 

  107. O. Eziaghighala, M. Iwe, A. Agiriga, Niger. Food J. 28, 237–240 (2010)

    Google Scholar 

  108. T.A. Eisele, S.R. Drake, J. Food Compos. Anal. 18, 213–221 (2005)

    CAS  Google Scholar 

  109. M. Abid, S. Jabbar, T. Wu, M.M. Hashim, B. Hu, S. Lei, X. Zeng, Ultrason. Sonochem. 21, 93–97 (2014)

    CAS  PubMed  Google Scholar 

  110. M.A. Magerramov, A.I. Abdulagatov, I.M. Abdulagatov, N.D. Azizov, J. Food Process Eng. 29, 304–326 (2006)

    Google Scholar 

  111. A. Ekşi, E.B.U. Kirtiş, Eur. J. Food Sci. Technol. 4, 67–75 (2016)

    Google Scholar 

  112. J. Altuntas, G.A. Evrendilek, M.K. Sangun, H.Q. Zhang, Int. J. Food Sci. Technol. 45, 899–905 (2010)

    CAS  Google Scholar 

  113. S. Wibowo, E.A. Essel, S. De Man, N. Bernaert, B. Van Droogenbroeck, T. Grauwet, A. Van Loey, M. Hendrickx, Innov. Food Sci. Emerg. Technol. 54, 64–77 (2019)

    CAS  Google Scholar 

  114. X. Bi, F. Liu, L. Rao, J. Li, B. Liu, X. Liao, J. Wu, Innov. Food Sci. Emerg. Technol. 17, 85–92 (2013)

    CAS  Google Scholar 

  115. G.A. Evrendilek, Innov. Food Sci. Emerg. Technol. 33, 195–205 (2016)

    CAS  Google Scholar 

  116. F. Noci, J. Riener, M. Walkling-Ribeiro, D.A. Cronin, D.J. Morgan, J.G. Lyng, J. Food Eng. 85, 141–146 (2008)

    Google Scholar 

  117. M. Abid, S. Jabbar, T. Wu, M.M. Hashim, B. Hu, S. Lei, X. Zhang, X. Zeng, Ultrason. Sonochem. 20, 1182–1187 (2013)

    CAS  PubMed  Google Scholar 

  118. J.-S. Park, J.-W. Ha, Food Microbiol. 84, 103277 (2019)

    CAS  PubMed  Google Scholar 

  119. Y. Zhang, Z. Zhang, F. Chen, H. Zhang, X. Hu, Ultrason. Sonochem. 19, 43–48 (2012)

    PubMed  Google Scholar 

  120. J. Warczok, M. Ferrando, F. Lopez, C. Guell, J. Food Eng. 63, 63–70 (2004)

    Google Scholar 

  121. B.-J. Wang, T.-C. Wei, Z.-R. Yu, LWT-. Food Sci. Technol. 38, 683–689 (2005)

    CAS  Google Scholar 

  122. N. Zhu, Y. Zhu, N. Yu, Y. Wei, J. Zhang, Y. Hou, A.-D. Sun, Food Chem. 274, 146–155 (2019)

    CAS  PubMed  Google Scholar 

  123. D. Bermúdez-Aguirre, G.V. Barbosa-Cánovas, J. Food Eng. 108, 383–392 (2012)

    Google Scholar 

  124. R.M. Aadil, X.-A. Zeng, D.-W. Sun, M.-S. Wang, Z.-W. Liu, Z.-H. Zhang, LWT-. Food Sci. Technol. 62, 890–893 (2015)

    CAS  Google Scholar 

  125. H. Kelebek, S. Selli, A. Canbas, T. Cabaroglu, Microchem. J. 91, 187–192 (2009)

    CAS  Google Scholar 

  126. J. AltuntaŞ, G. Akdemir Evrendilek, M.K. Sangun, H.Q. Zhang, J. Food Process Eng. 34, 1506–1522 (2011)

    Google Scholar 

  127. M.G.M. Costa, T.V. Fonteles, A.L.T. de Jesus, F.D.L. Almeida, M.R.A. de Miranda, F.A.N. Fernandes, S. Rodrigues, Food Bioprocess Technol. 6, 997–1006 (2013)

    CAS  Google Scholar 

  128. W.U. Rehman, A. Muhammad, Q.A. Khan, M. Younas, M. Rezakazemi, Sep. Purif. Technol. 224, 481–489 (2019)

    CAS  Google Scholar 

  129. A. Cassano, C. Conidi, E. Drioli, J. Food Eng. 107, 366–373 (2011)

    CAS  Google Scholar 

  130. P. Nguyen, G.S. Mittal, Chem. Eng. Process. 46, 360–365 (2007)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fakhreddin Salehi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehi, F. Physicochemical characteristics and rheological behaviour of some fruit juices and their concentrates. Food Measure 14, 2472–2488 (2020). https://doi.org/10.1007/s11694-020-00495-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00495-0

Keywords