Skip to main content

Persimmon flours as functional ingredients in spaghetti: chemical, physico-chemical and cooking quality

A Correction to this article was published on 13 April 2020

This article has been updated

Abstract

The aims of the current work were to enrich durum wheat semolina spaghetti with two types of persimmon flours (from cv. “Rojo Brillante” and “Triumph”) obtained from persimmon juice coproducts, at two concentrations (3% and 6%), to evaluate their chemical composition, physicochemical properties and cooking quality and to asses if they can be detected as different from control wheat semolina spaghetti (without any persimmon flours added) by sensory analysis. Persimmon flour enriched spaghetti had higher total dietary fiber than control spaghetti, which allows applying the nutritional claim ‘source of fiber”. The addition of persimmon flours also increased their total yellow content (related to carotenoid content) in a dose-dependent way, which produced a higher yellow colour, typical and well appreciated by consumers in this type of pasta. Another positive characteristic of these spaghetti enriched with persimmon flours is that they need a short optimum cooking time in comparison with control spaghetti without it imply any significant change in their cooking quality. The type of persimmon flour and its concentration caused differences in colour of uncooked and cooked spaghetti, optimum cooking time, total organic matter, weight increase, fracturability and stickiness. Furthermore, 3% spaghetti formulations were not different from the control by sensory evaluation. In conclusion, the enrichment of durum wheat semolina spaghetti with persimmon flours allowed the valorization of persimmon coproducts and the production of spaghetti with similar cooking quality to traditional durum wheat semolina spaghetti, furthermore, the best results were obtained when persimmon flour from ‘Rojo Brillante’ was added at 3%.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Change history

  • 13 April 2020

    The original version of the article unfortunately contained an error in the first name and the surname of the sixth author in the author group. The author name was published as ‘Moscaritolo Salvatore’, the corrected first name and the surname of the author is ‘Salvatore Moscaritolo’.

References

  1. O. Patiño-Rodríguez, L.A. Bello-Pérez, P.C. Flores-Silva, M.M. Sánchez-Rivera, C.A. Romero-Bastida, LWT-Food Sci. Technol. (2018). https://doi.org/10.1016/j.lwt.2017.12.025

    Article  Google Scholar 

  2. B. Ancos, E. Gonzalez, M.P. Cano, J. Agric. Food Chem. (2000). https://doi.org/10.1021/jf990911w

    Article  PubMed  Google Scholar 

  3. A. Mir-Marqués, M.L. Domingo, M. Cervera, M. De la Guardia, Food Chem. (2015). https://doi.org/10.1016/j.foodchem.2014.09.076

    Article  PubMed  Google Scholar 

  4. S. Gorinstein, G. Kulasek, E. Bartnikowska, M. Leontowicz, M. Zemser, M. Morawiec, S. Trakhtenberg, J. Nutr. Biochem. (1998). https://doi.org/10.1016/S0955-2863(98)00003-5

    Article  Google Scholar 

  5. S. Fushimi, T. Miyazawa, F. Kimura, K. Nakagawa, G.C. Burdeos, T. Miyazawa, J. Nutr. Sci. Vitaminol (Tokyo). (2015). https://doi.org/10.3177/jnsv.61.90

    Article  PubMed  Google Scholar 

  6. G.N. Kim, M.R. Shin, S.H. Shin, A.R. Lee, J.Y. Lee, B.I. Seo, M.Y. Kim, T.H. Kim, J.S. Noh, M.H. Rhee, S.S. Roh, Biomed. Res. Int. (2016). https://doi.org/10.1155/2016/1723042

    Article  PubMed  PubMed Central  Google Scholar 

  7. Y. Ahn, M. R. Gebereamanuel, E. K. Oh, K. Oran , J. Nutr. Health. (2017). https://doi.org/10.4163/jnh.2017.50.3.225

  8. WHO, Global action plan for the prevention and control of noncommunicable diseases 2013–2020. World Health Organization. (2013) https://www.who.int/nmh/events/ncd_action_plan/en/ Accessed 22 March 2018.

  9. FAOSTAT, Item: Production: crops: persimmons; area: world; from 2006 to 2016 year. Item: Production: crops: persimmon; area: world from 2016 year. (2017) https://www.fao.org/faostat/en/#data/QC/visualize. Accessed 29 Jan 2017.

  10. R. Lucas-González, M. Viuda-Martos, J.A. Pérez-Álvarez, J. Fernández-López, Plant Foods Hum. Nutr. (2017). https://doi.org/10.1007/s11130-016-0592-z

    Article  PubMed  Google Scholar 

  11. R. Lucas-González, J. Fernández-López, J.A. Pérez-Álvarez, M. Viuda-Martos, J. Sci. Food Agric. (2018). https://doi.org/10.1002/jsfa.8487

    Article  PubMed  Google Scholar 

  12. A. Gull, K. Prasad, P. Kumar, LWT-Food. Sci. Technol. (2015). https://doi.org/10.1016/j.lwt.2015.03.008

    Article  Google Scholar 

  13. G.M. Bastos, M.S.S. Júnior, M. Caliari, A.L.A. Pereira, C.C. De Morais, M.R.H. Campos, LWT -Food Sci. Technol. (2016). https://doi.org/10.1016/j.lwt.2015.07.067

    Article  Google Scholar 

  14. L. Padalino, A. Conte, L. Lecce, D. Likyova, V. Sicari, T.M. Pellicanò, M. Poiana, M.A. Del Nobile (2017) Czech. J. Food Sci. https://doi.org/10.17221/171/2016-CJFS

  15. B. Biernacka, D. Dziki, U. Gawlik-Dziki, R. Ròżyło, M. Siastała, LWT -Food. Sci. Technol. (2017). https://doi.org/10.1016/j.lwt.2016.11.042

    Article  Google Scholar 

  16. C. Aranibar, N.B. Pigni, M. Martinez, A. Aguirre, P. Ribotta, D. Wunderlin, R. Borneo, LWT -Food Sci. Technol. (2018). https://doi.org/10.1016/j.lwt.2017.11.003

    Article  Google Scholar 

  17. E. Agama-Acevedo, L.A. Bello-Pérez, G. Pacheco-Vargas, J. Tovar, S.G. Sáyago-Ayerdi, J. Food Process. Preserv. (2019). https://doi.org/10.1111/jfpp.14012

    Article  Google Scholar 

  18. L. Deng, E.M. Elias, F.A. Manthey, Cereal Chem. (2017). https://doi.org/10.1094/CCHEM-03-17-0064-N

    Article  Google Scholar 

  19. N. Aravind, M. Sissons, N. Egan, C. Fellows, Food Chem. (2012). https://doi.org/10.1016/j.foodchem.2011.07.042

    Article  PubMed  Google Scholar 

  20. AOAC, Official methods of analysis of AOAC International, 18th ed (Association of Official Analytical Chemists, Arlington VA, 2007).

  21. A. Cavazza, C. Corradini, M. Rinaldi, P. Salvadeo, C. Borromei, R. Massini, Food Bioprocess Technol. (2013). https://doi.org/10.1007/s11947-012-0906-6

    Article  Google Scholar 

  22. AACC, American Association of Cereal Chemist International Approved Method 14-50.01. Determination of pigments. (AACC International, St Paul, MN, 1999).

  23. APHA, Compendium of methods for the microbiological examinations of foods (American Public Health Association Press, Washington, 2015).

  24. E. Cocci, G. Sacchetti, M. Vallicelli, A. Angioloni, M. Dalla Rosa, J. Food Eng. (2008). https://doi.org/10.1016/j.jfoodeng.2007.08.013

  25. A. Menger, Crucial points of view concerning the execution of pasta cooking tests and their evaluation. Comptes Rendus Proceedings of ICC International Symposium: Matières Premières et Pâtes Alimentaires, p. 53. Roma: Istituto Nazionale della Nutrizione. (1979).

  26. J.A. Delcour, I.J. Joye, B. Pareyt, E. Wilderjans, K. Brijs, B. Lagrain, Annu. Rev. Food Sci. Technol. (2012). https://doi.org/10.1146/annurev-food-022811-101303

    Article  PubMed  Google Scholar 

  27. M.G. D’Egidio, E. De Stefanis, S. Fortini, G. Galterio, S. Nardi, D. Sgrulletta, A. Bozzini, Standardization of cooking quality analysis in macaroni and pasta products. Cereal Food World 27, 367e–368e (1982)

    Google Scholar 

  28. ISO 8589, Sensory Analysis- General guidance for the desing of test rooms. (International Standard, Geneve, Switzerland, 2007).

  29. ISO 4120, Sensory analysis—Methodology—Triangle test. (International Standard, Geneve, Switzerland, 2004).

  30. V. Ntuli, P. Chatanga, R. Kwiri, G.H. Tendekayi, G. Jephris, M. Taole, P.R. Portia, Afr. J. Microbiol. Res. (2017). https://doi.org/10.5897/ajmr2016.8130

    Article  Google Scholar 

  31. Ministero della Sanità. Norme igienico-sanitarie sulla lavorazione e conservazione delle paste alimentari. Circolare del Ministero della Sanità 3 agosto 1985, n. 32. (1985)

  32. B. Gatta, M. Rutigliano, L. Padalino, A. Conte, M.A. Del Nobile, A. Di Luccia, LWT-Food Sci. Technol. (2017). https://doi.org/10.1016/j.lwt.2017.06.013

    Article  Google Scholar 

  33. L. Mayor, A.M. Sereno, J. Food Eng. (2004). https://doi.org/10.1016/S0260-8774(03)00144-4

    Article  Google Scholar 

  34. E. Carini, E. Curti, E. Spotti, E. Vittadini, Food Bioprocess Technol. (2012). https://doi.org/10.1007/s11947-010-0476-4

    Article  Google Scholar 

  35. L. Padalino, C. Costa, A. Conte, M.G. Melilli, C. Sillitti, R. Bognanni, S.A. Raccuia, M.A. Del Nobile, Carbohydr. Polym. (2017). https://doi.org/10.1016/j.carbpol.2017.05.081

    Article  PubMed  Google Scholar 

  36. X. Lu, M.A. Brennan, L. Serventi, J. Liu, W. Guan, C.S. Brennan, Food Chem. (2018). https://doi.org/10.1016/j.foodchem.2018.04.130

    Article  PubMed  Google Scholar 

  37. EC. Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. Official Journal of the European Union L404, 9–25. (2006)

  38. L. Padalino, M. Mastromatteo, L. Lecce, F. Cozzolino, M.A. Del Nobile, J. Cereal Sci. (2013). https://doi.org/10.1016/j.jcs.2012.12.010

    Article  Google Scholar 

  39. L. Paznocht, Z. Kotíková, M. Šulc, J. Lachman, M. Orsák, M. Eliášová, P. Martinek, Food Chem. (2018). https://doi.org/10.1016/j.foodchem.2017.07.151

    Article  PubMed  Google Scholar 

  40. J. Martínez-Girón, A.M. Figueroa-Molano, L.E. Ordóñez-Santos, Food Sci. Technol. (2017). https://doi.org/10.1590/1678-457x.14916

    Article  Google Scholar 

  41. A. Albors, M.D. Raigon, M.D. García-Martinez, M.E. Martín-Esparza, LWT-Food. Sci. Technol. (2016). https://doi.org/10.1016/j.lwt.2016.07.047

    Article  Google Scholar 

  42. J.A. Delcour, J. Vansteelandt, M.C. Hythier, J. Abècassis, M. Sindic, C. Deroanne, J. Agric. Food Chem. (2000). https://doi.org/10.1021/jf991051m

    Article  PubMed  Google Scholar 

  43. S. Chillo, J.A. Monro, S. Mishra, C.J. Henry, Int. J. Food Sci. Nutr. (2010). https://doi.org/10.3109/09637480903476423

    Article  PubMed  Google Scholar 

  44. A.R. Islas-Rubio, A.M. Calderón de la Barca, F. Cabrera-Chávez, A.G. Cota-Gastélum, T. Beta, LWT-Food. Sci. Technol. (2014). https://doi.org/10.1016/j.lwt.2014.01.014

    Article  Google Scholar 

  45. H. Chiron, P. Roussel, Handbook of Food Science and Technology 3: Food Biochemistry and Technology (Wiley, Hoboken, 2016)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank ERASMUS Program for supporting the mobility grant of one of the authors (R. Lucas-González).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: RL, MVM, JAPA, CCL, JFL and GS; Methodology: RL, BS and MS; Formal analysis and investigation: RL, MVM, JFL and GS; Writing—original draft preparation: RL and JFL; All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. Funding acquisition: JAPA and CCL; Supervision: JFL and GS.

Corresponding author

Correspondence to Juana Fernández-López.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: The first name and the surname of the sixth author in the author group was corrected. The author name was published as ‘Moscaritolo Salvatore’ and the corrected first name and the surname is ‘Salvatore Moscaritolo’.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lucas-González, R., Viuda-Martos, M., Pérez-Álvarez, J.Á. et al. Persimmon flours as functional ingredients in spaghetti: chemical, physico-chemical and cooking quality. Food Measure 14, 1634–1644 (2020). https://doi.org/10.1007/s11694-020-00411-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00411-6

Keywords

  • Kaki
  • Co-products
  • Spaghetti
  • Cooking quality
  • Fiber
  • Yellow pigments