Skip to main content
Log in

Bioactive constituents, microstructural and nutritional quality characterisation of peanut flat bread

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Flat bread is a popular staple food consumed in India prepared from whole wheat. This research is an attempt to add peanut (Arachis hypogaea) flour (10–40%) prepared by processing the peanut meal in wheat flour to enhance bioactive constituents, textural and nutritional properties of the resultant flat bread. Stickiness and spreadability of dough was slightly increased with increasing levels of peanut flour (PF). Flat bread substituted with PF exhibited significantly higher total phenolic content and total flavonoid content, antioxidant activities by scavenging DPPH and ABTS free radicals than control. Farinograph, textural and sensory assessment of flat bread, recommended substitution of 30% PF. Flat bread prepared from this level of PF had superior protein (22.89%), ash (9.34%), fat (3.52%) and mineral content. An enhanced in vitro protein digestibility (85.73%), higher dietary fiber content (8.60%) and lower glycemic index (42.39) were recorded as compared to that of control flat bread. The microstructure of flat bread containing 30% PF showed disrupted gluten matrix with protein aggregates whereas in case of control flat bread aggregates of starch granules overlapping one another were observed. The X-ray diffraction spectra showed V-type polymorphism with one diffraction peak at 2θ = 20.1°, displaying a lower degree of crystallinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M.L.D. Francisco, A.V.A. Resurreccion, LWT 47, 189 (2012)

    CAS  Google Scholar 

  2. J. Yu, M. Ahmedna, I. Goktepe, Food Chem. 103, 121 (2007)

    CAS  Google Scholar 

  3. B. Gullón, P. Gullón, F. Tavaria, M. Pintado, A.M. Gomes, J.L. Alonso, J.C. Parajó, J. Funct. Foods 6, 438 (2014)

    Google Scholar 

  4. R. Jiang, J.A.E. Manson, M.J. Stampfer, S. Liu, W.C. Willett, F.B. Hu, J. Am. Med. Assoc. 288, 2554 (2002)

    Google Scholar 

  5. S.S. Arya, A.R. Salve, S. Chauhan, J. Food Sci. Technol. 53, 31 (2016)

    CAS  PubMed  Google Scholar 

  6. A. Salve, S. Arya, J. Microbiol. Biotechnol. Food Sci. 8, 835 (2018)

    CAS  Google Scholar 

  7. R.M. Lopes, T.S. Agostini-Costa, M.A. Gimenes, D. Silveira, J. Agric. Food Chem. 59, 4321 (2011)

    CAS  PubMed  Google Scholar 

  8. Y. Ma, W.L. Kerr, R.B. Swanson, J.L. Hargrove, R.B. Pegg, Food Chem. 145, 883 (2014)

    CAS  PubMed  Google Scholar 

  9. N.S. Podio, M.V. Baroni, G.T. Pérez, D.A. Wunderlin, Food Chem. 293, 408 (2019)

    CAS  PubMed  Google Scholar 

  10. A.M. Paula, A.C. Conti-Silva, J. Food Eng. 121, 9 (2014)

    Google Scholar 

  11. T.A. Woyengo, V.R. Ramprasath, P.J.H. Jones, Eur. J. Clin. Nutr. 63, 813 (2009)

    CAS  PubMed  Google Scholar 

  12. A.B. Awad, K.C. Chan, A.C. Downie, C.S. Fink, Nutr. Cancer 36, 238 (2000)

    CAS  PubMed  Google Scholar 

  13. S. Patil, S.S. Arya, J. Food Meas. Charact. 13, 821 (2019)

    Google Scholar 

  14. S. Chauhan, S.K. Sonawane, S.S. Arya, Food Biosci. 19, 80 (2017)

    CAS  Google Scholar 

  15. A. Shalini, G. Sonali, J. Food Process. Preserv. 41, e12993 (2017)

    Google Scholar 

  16. B. Oliete, M. Gómez, V. Pando, E. Fernández-Fernández, P.A. Caballero, F. Ronda, Food Sci. Technol. Int. 14, 259 (2008)

    CAS  Google Scholar 

  17. B. Singh, U. Singh, Plant Foods Hum. Nutr. 41, 165 (1991)

    CAS  PubMed  Google Scholar 

  18. L.S. Badwaik, K. Prasad, D. Seth, J. Food Sci. Technol. 51, 2713 (2014)

    CAS  PubMed  Google Scholar 

  19. F. MacRitchie, J. Cereal Sci. (Academic Press, 1987).

  20. S. Arya, L. Ananthanarayan, L. Rodrigues, A. Waghmare, J. Food Meas. Charact. 10, 614 (2016)

    Google Scholar 

  21. T. Bøhn, M. Cuhra, T. Traavik, M. Sanden, J. Fagan, R. Primicerio, Food Chem. 153, 207 (2014)

    PubMed  Google Scholar 

  22. A.R. Salve, K. Pegu, S.S. Arya, Ultrason. Sonochem. 59, 104728 (2019)

    CAS  PubMed  Google Scholar 

  23. S. Ghodke, L. Ananthanarayan, Food Hydrocoll. 21, 110 (2007)

    Google Scholar 

  24. S. K. Ghodke, Int. J. Food Eng. 5, Article 7 (2009).

  25. H. A. T. Herbert Stone, Rebecca N. Bleibaum, San Diego, CA Acad. Press 254 (2004).

  26. P. Marpalle, S.K. Sonawane, S.S. Arya, LWT 58, 614 (2014)

    CAS  Google Scholar 

  27. A. Kurhade, S. Patil, S.K. Sonawane, J.S. Waghmare, S.S. Arya, J. Food Meas. Charact. 10, 32 (2016)

    Google Scholar 

  28. AOAC, AOAC (1995).

  29. E.T. Mertz, M.M. Hassen, C. Cairns-Whittern, A.W. Kirleis, L. Tu, J.D. Axtell, Proc. Natl. Acad. Sci. USA. 81, 1 (1984)

    CAS  PubMed  Google Scholar 

  30. I. Goñi, A. Garcia-Alonso, F. Saura-Calixto, Nutr. Res. 17, 427 (1997)

    Google Scholar 

  31. J. Badgujar, S. Gaikwad, S.K. Sonawane, S.S. Arya, J. Food Meas. Charact. 11, 768 (2017)

    Google Scholar 

  32. 32-31.01 AACC International Methods 32-05.01, 32-07.01, 32–28.01 and and 32-45. 01. 32-32.01, 32-33.01, 32-40.01, 32-41.01, AACC Int. Approv. Methods Anal. AACC International Press (2010).

  33. A.K. Holtekjølen, H.H.R. Olsen, E.M. Færgestad, A.K. Uhlen, S.H. Knutsen, LWT 41, 2085 (2008)

    Google Scholar 

  34. C.E. Chinma, C.C. Ariahu, J.O. Abu, J. Food Sci. Technol. 50, 1179 (2013)

    CAS  PubMed  Google Scholar 

  35. G.G. Codina, D. Bordei, V. Paslaru, The effects of different doses of gluten on rheological behaviour of dough and bread quality. Roum. Biotechnol. Lett. 13(6), 37–42 (2008)

    CAS  Google Scholar 

  36. A. Sindhuja, M.L. Sudha, A. Rahim, Eur. Food Res. Technol. 221, 597 (2005)

    CAS  Google Scholar 

  37. A. Banerji, L. Ananthanarayan, S. Lele, J. Food Process. Preserv. 42, e13361 (2018)

    Google Scholar 

  38. J. Ahmed, L. Thomas, LWT 87, 443 (2018)

    CAS  Google Scholar 

  39. L. Tebben, Y. Li, Cereal Chem. 96, 263 (2019)

    CAS  Google Scholar 

  40. W.N. Huang, R.C. Hoseney, Cereal Chem. 76, 276 (1999)

    CAS  Google Scholar 

  41. C. Collar, P. Andreu, J. Martı́nez, E. Armero (1999) Food Hydrocoll. 13: 467.

  42. H. Grausgruber, E. Hatzenbichler, P. Ruckenbauer, J. Texture Stud. 34, 69 (2003)

    Google Scholar 

  43. D. Indrani, P. Swetha, C. Soumya, J. Rajiv, and G. Venkateswara Rao, LWT 44, 719 (2011)

    CAS  Google Scholar 

  44. J. Wang, X. Yuan, Z. Jin, Y. Tian, H. Song, Food Chem. 104, 242 (2007)

    CAS  Google Scholar 

  45. Y. Chukwumah, L. Walker, M. Verghese, Int. J. 10, 4941 (2009)

    CAS  Google Scholar 

  46. I. Odriozola-Serrano, R. Soliva-Fortuny, O. Martín-Belloso, Eur. Food Res. Technol. 228, 239 (2008)

    CAS  Google Scholar 

  47. Y. Pan, J. Zhu, H. Wang, X. Zhang, Y. Zhang, C. He, X. Ji, H. Li, Food Chem. 103, 913 (2007)

    CAS  Google Scholar 

  48. M.A. Kominiarek, P. Rajan, Med. Clin. N. Am. 100, 1199 (2016)

    PubMed  Google Scholar 

  49. World Health Organization. Technical Report Series 935, WHO 295 (2007).

  50. W. Zhao, F. Zhai, D. Zhang, Y. An, Y. Liu, Y. He, K. Ge, N.S. Scrimshaw, Food Nutr. Bull. 25, 123 (2004)

    PubMed  Google Scholar 

  51. D. Rehrah, M. Ahmedna, I. Goktepe, J. Yu, Int. J. Food Sci. Technol. 44, 2075 (2009)

    CAS  Google Scholar 

  52. U. Singh, B. Singh, Functional properties of sorghum-peanut composite flour. Cereal Chem. 68(5), 460–463 (1991)

    Google Scholar 

  53. J.L. Greger, J. Nutr. 129, 1434S (1434S)

    CAS  PubMed  Google Scholar 

  54. K. Foster-Powell, S.H. Holt, J.C. Brand-Miller, Am. J. Clin. Nutr. 76, 5 (2002)

    CAS  PubMed  Google Scholar 

  55. C.A. Johnston, C. Tyler, B.K. McFarlin, W.S.C. Poston, C.K. Haddock, R. Reeves, J.P. Foreyt, Pediatrics 120, e1450 (2007)

    PubMed  Google Scholar 

  56. S. Gómez-Galera, E. Rojas, D. Sudhakar, C. Zhu, A.M. Pelacho, T. Capell, P. Christou, Transgenic Res. 19, 165 (2010)

    PubMed  Google Scholar 

  57. D. Indrani, P. Prabhasankar, J. Rajiv, G.V. Rao, Food Res. Int. 40, 1254 (2007)

    CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the University Grants Commission, New Delhi, Government of India, for providing financial support.

Funding

This study was funded by UGC-BSR (Fellowship Award No. F.4-1/2006(BSR)/5-62/2007(BSR)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Arya.

Ethics declarations

Conflict of interest

The authors do not have conflict of interest with any individual or organization.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salve, A.R., Arya, S.S. Bioactive constituents, microstructural and nutritional quality characterisation of peanut flat bread. Food Measure 14, 1582–1594 (2020). https://doi.org/10.1007/s11694-020-00406-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00406-3

Keywords

Navigation