Skip to main content
Log in

Effect of partial drying intensity, frozen storage and repeated freeze-thaw cycles on some quality attributes of dehydrofrozen quince fruit

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The present study investigated the effect of multi-freeze-thaw cycles on thawed water exudate, final water content, color features, and polyphenolic contents of frozen and dehydrofrozen quince fruit. Quince pieces were predried at 40 °C and 3 m/s, until specific final water contents: 2, 1, and 0.3 g H2O/g db, then, frozen at − 18 °C and stored during 6 months. Monthly, quinces were thawed at 20 °C to perform quality analyses: treated quinces had remarkable water retention, and no significant difference between values over storage time has been recorded (p > 0.05). Convective pre-drying step remarkably reduces the negative impact of freezing/thawing processes and freeze-thaw cycles on quince color and guarantees its stability during frozen storage: a significant decrease of thawing impact on total color difference has been noticed for dehydrofrozen samples (3.32) compared to (12.53) for conventionally frozen ones. Finally, dehydrofreezing allows a better retention of polyphenols content, during frozen storage. Fruits quality, with high water content, such as quinces may be compromised by freezing and frozen storage. Tissue damage occurs as ice accrues and concentrates soluble solids. Convective pre-drying can remove some of the available water, which reduces ice formation during freezing and subsequently storage. This piece of work has proved the potential use of convective air drying before freezing to reduce the negative impact of freezing/thawing processes and freeze-thaw cycles on quince quality and guarantees its stability during storage. These fruits marketability is highly correlated with their textural quality in addition to their color properties and bioactive components. Dehydrofreezing is recommended for better quince fruit quality preservation during storage. Thus, it may be a commercial method to reduce shipping costs and fruits storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

TWE:

Thawed water exudate

FWC:

Final water content

TCD:

Total color difference

BI:

Browning index

TPC:

Total polyphenols content

References

  1. B.M. Silva, P.B. Andrade, P. Valentão, F. Ferreres, R.M. Seabra, M.A. Ferreira, J. Agric. Food Chem. 52, 4705 (2004)

    CAS  PubMed  Google Scholar 

  2. M. Holzwarth, S. Korhummel, R. Carle, D.R. Kammerer, Food Res. Int. 48, 241 (2012)

    CAS  Google Scholar 

  3. Z. Lisiewska, W. Kmiecik, Food Chem. 70, 167 (2000)

    CAS  Google Scholar 

  4. M.J. Reno, M.E.T. Prado, J.V.D. Resende, Food Sci. Technol. 31, 247 (2011)

    Google Scholar 

  5. W. Hajji, H. Gliguem, S. Bellagha, K. Allaf, Drying Technol. 37, 1028 (2018)

    Google Scholar 

  6. C.M. Marani, M.E. Agnelli, R.H. Mascheroni, J. Food Eng. 79, 1122 (2007)

    CAS  Google Scholar 

  7. R. Angelaand, W.L. Kerr, J. Food Process. Preserv. 34, 887 (2010)

    Google Scholar 

  8. H. Ando, K. Kajiwara, S. Oshita, T. Suzuki, J. Food Eng. 108, 473 (2012)

    Google Scholar 

  9. F.J. He, G.A. MacGregor, Pflügers Arch. Eur. J. Physiol. 467, 577 (2015)

    CAS  Google Scholar 

  10. L. Ben Haj Said, S. Bellagha, K. Allaf, J. Food Eng. 165, 22 (2015)

    CAS  Google Scholar 

  11. B. Li, D.-W. Sun, J. Food Eng. 54, 175 (2002)

    Google Scholar 

  12. AOAC, in 567, ed. by K. Helrich, (Virginia, Arlington, 1993), p. 22201

  13. L. Ben Haj Said, S. Bellagha, K. Allaf, Food Bioprocess Technol. 9, 252 (2016)

    CAS  Google Scholar 

  14. M. Maskan, J. Food Eng. 48, 169 (2001)

    Google Scholar 

  15. Wang et al., Food Bioprod. Process. 106, 117 (2017)

    CAS  Google Scholar 

  16. M.K. Roy, M. Takenaka, S. Isobe, J. Sci. Food Agric. 87, 2259 (2007)

    CAS  Google Scholar 

  17. S. Phothiset, S. Charoenrein, J. Sci. Food Agric. 94, 189 (2014)

    CAS  PubMed  Google Scholar 

  18. M. Abd-Elhady, Ann. Agric. Sci. 59, 69 (2014)

    Google Scholar 

  19. Y. Ando, Y. Maeda, K. Mizutani, N. Wakatsuki, S. Hagiwara, H. Nabetani, J. Food Eng. 169, 114 (2016)

    CAS  Google Scholar 

  20. N. Lowithun, S. Charoenrein, Int. J. Food Sci. Technol. 44, 2183 (2009)

    CAS  Google Scholar 

  21. A. Rincon, W.L. Kerr, J. Food Process. Preserv. 34, 887 (2010)

    CAS  Google Scholar 

  22. L.A. Ramallo, R.H. Mascheroni, J. Food Eng. 99, 269 (2010)

    Google Scholar 

  23. A.K. Yadav, S.V. Singh, J. Food Sci. Technol. 51, 1654 (2014)

    PubMed  Google Scholar 

  24. S. Zhu, A. Bail, H.S. Ramaswamy, N. Chapleau, J. Food Sci. 69, 190 (2004)

    Google Scholar 

  25. E.K. Dermesonlouoglou, M.C. Giannakourou, P. Taoukis, J. Food Eng. 78, 272 (2007)

    CAS  Google Scholar 

  26. A.O. Raji, R. Akinoso, M.O. Raji, Food Sci. Nutr. 4, 163 (2016)

    CAS  PubMed  Google Scholar 

  27. M.K. Krokida, E. Tsami, Z.B. Maroulis, Drying Technol. 16, 667 (1998)

    CAS  Google Scholar 

  28. L.-Z. Deng, X.-H. Yang, A.S. Mujumdar, J.-H. Zhao, D. Wang, Q. Zhang, J. Wang, Z.-J. Gao, H.-W. Xiao, Drying Technol. 36, 893 (2018)

    CAS  Google Scholar 

  29. E. Forni, A. Sormani, S. Scalise, D. Torreggiani, Food Res. Int. 30, 87 (1997)

    CAS  Google Scholar 

  30. L. Wu, T. Orikasa, K. Tokuyasu, T. Shiina, A. Tagawa, J. Food Eng. 91, 560 (2009)

    Google Scholar 

  31. H.S. Lee, G.A. Coates, J. Agric. Food Chem. 50, 3988 (2002)

    CAS  PubMed  Google Scholar 

  32. R. Gormley, T. Walshe, K. Hussey, F. Butler, LWT Food Sci. Technol. 35, 190 (2002)

    CAS  Google Scholar 

  33. M.H. Rahman, M.M. Hossain, S.M.E. Rahman, M.A. Hashem, D.-H. Oh, Korean J. Food Sci. Anim. 34, 482 (2014)

    Google Scholar 

  34. A. Alhamdan, B. Hassan, H. Alkahtani, D. Abdelkarim, M. Younis, Saudi J. Biol. Sci. 25, 1552 (2018)

    PubMed  Google Scholar 

  35. P. Talens, N. Martı́nez-Navarrete, P. Fito, A. Chiralt, Innov. Food Sci. Emerg. 3, 191 (2002)

    Google Scholar 

  36. J.L. Tagubase, S. Ueno, Y. Yoshie, T. Araki, Trans. Jpn. Soc. Refrig. Air Cond. Eng. 33, 267 (2016)

    Google Scholar 

  37. A. Wojdyło, J. Oszmiański, P. Bielicki, J. Agric. Food Chem. 61, 2762 (2013)

    PubMed  Google Scholar 

  38. B.N. De Ancos, C. Sánchez-Moreno, S. De Pascual-Teresa, M.P. Cano, in Handbook of Fruits and Fruit Processing (Wiley-Blackwell, 2012), p. 103

  39. N. Djendoubi Mrad, N. Boudhrioua, N. Kechaou, F. Courtois, C. Bonazzi, Food Bioprod. Process. 90, 433 (2012)

    Google Scholar 

  40. J.-H. Zhao, F. Liu, X.-L. Pang, H.-W. Xiao, X. Wen, Y.-Y. Ni, Int. J. Food Sci. Technol. 51, 1441 (2016)

    CAS  Google Scholar 

  41. C. Türkben, E. Sarıburun, C. Demir, V. Uylaşer, Food Anal. Method 3, 144 (2010)

    Google Scholar 

  42. G. Blanda, L. Cerretani, A. Cardinali, S. Barbieri, A. Bendini, G. Lercker, LWT Food Sci. Technol. 42, 30 (2009)

    CAS  Google Scholar 

  43. A. Rózek, J.V. García-Pérez, F. López, C. Güell, M. Ferrando, J. Food Eng. 99, 142 (2010)

    Google Scholar 

  44. C. Téllez-Pérez, M.M. Sabah, J.G. Montejano-Gaitán, V. Sobolik, C.A. Martínez, K. Allaf, Procedia Eng. 42, 978 (2012)

    Google Scholar 

  45. R. Puupponen-Pimiä, S.T. Häkkinen, M. Aarni, T. Suortti, A.-M. Lampi, M. Eurola, V. Piironen, A.M. Nuutila, K.-M. Oksman-Caldentey, J. Sci. Food Agric. 83, 1389 (2003)

    Google Scholar 

  46. A. Korus, Z. Lisiewska, Food Chem. 129, 149 (2011)

    CAS  Google Scholar 

  47. K. Rabie, B.C. Giovana, G. Amyl, S.L.B. Marianne, Curr. Nutr. Food Sci. 11, 223 (2015)

    Google Scholar 

  48. J.G. Baust, D. Gao, J.M. Baust, Organogenesis 5, 90 (2009)

    PubMed  PubMed Central  Google Scholar 

  49. C.M.J. Bof, R.C. Fontana, L.T. Piemolini-Barreto, I.G. Sandri, Braz. Arch. Biol. Technol. 55, 107 (2012)

    CAS  Google Scholar 

  50. R.M. Polinati, A.L.K. Faller, E. Fialho, Int. J. Food Sci. Technol. 45, 1814 (2010)

    CAS  Google Scholar 

  51. R. Khattab, G.B. Celli, A. Ghanem, M.S.-L. Brooks, J. Berry Res. 5, 231 (2015)

    CAS  Google Scholar 

  52. T. Baygar, Y. Alparslan, J. Food Sci. Technol. 52, 3458 (2015)

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge that this project is in the framework of a PhD MOBIDOC program and funded by the EU and administered by PASRI. Also thanks to STIFEN INDUSTRIES (Lebna, Tunisia) for the financial support and for providing raw material for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wafa Hajji.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajji, W., Bellagha, S. & Allaf, K. Effect of partial drying intensity, frozen storage and repeated freeze-thaw cycles on some quality attributes of dehydrofrozen quince fruit. Food Measure 14, 353–365 (2020). https://doi.org/10.1007/s11694-019-00297-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00297-z

Keywords

Navigation