Antimicrobial and antioxidant activities of different extracts of the peel of kumquat (Citrus japonica Thunb)


The objective of this work was to study the bioactive properties of kumquat fruit (Citrus japonica thumb)peel. The mineral composition (ICP-MS), phenolic and flavonoid contents (HPLC), volatiles (GC–MS), antioxidant activity (DPPH) and antimicrobial activity of kumquat peel were determined. Kumquat peel was found to be a good supplement of K, Mg, Ca and Na. The major phenolic acids found were p-hydroxybenzoic acid that followed by vanillic, protocatechuic, chlorogenic and sinapic acids, respectively. The extract contained also apigenin 7-glucosideflavonoid. The volatiles oil analysis showed that kumquat peel essential oil was rich in monoterpenoid limonene (96.33%). The oil was also composed of considerable amount of d-germacrene, α-myrecene, and α-pinene and minor amount of bicyclogermacrene and sabinene. The highest antioxidant activity was obtained using 70% ethanol extract (55.47%), while the least one was observed with n-hexane (27.05%). The antioxidant activity of kumquat extract increased from (21.31%) when the extract concentration was (63 µg/100 µl) to (64.98%) with concentration of (1000 µg/100 µl). Regarding the antimicrobial activity, the highest zone of inhibition (16.58 mm) was recorded with 70% ethanol extract, while the least zone of inhibition (8.98 mm) was found with acetone extract. Staphylococcus aureus was the most sensitive organism with the highest zone of inhibition (16.70 mm) and Escherichia coli was the most resistant organism with the least zone of inhibition (11.30 mm). The present study reviewed antioxidant and antimicrobial activity of different extracts of kumquat peel and concluded that kumquat peel might be used as a natural bioactive source, mainly in the food and pharmaceutical industries.

This is a preview of subscription content, log in to check access.

Fig. 1


  1. 1.

    G. Aladekoyi, S.V. Omosuli, O.O. Orungbemi, A.T. Adesuyi, Evaluation of antimicrobial activity of oil extracted from three different citrus seeds (Citrus limon, Citrus aurantifolia and Citrus aurantium). Int. J. Sci. Res. Eng. Stud. 3(3), 16–20 (2016)

    Google Scholar 

  2. 2.

    M.-H. Chen, K.-M. Yang, T.-C. Huang, M.-L. Wu, Traditional small-size citrus from taiwan: essential oils, bioactive compounds and antioxidant capacity. Medicines 4(2), 28 (2017)

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  3. 3.

    F. Jaliliantabar, A.N. Lorestani, R. Gholami, Physical properties of kumquat fruit. Int. Agrophys. 27(1), 107–109 (2013)

    Article  Google Scholar 

  4. 4.

    G.K. Jayaprakasha, K.N. Chidambara Murthy, M. Etlinger, S.M. Mantur, B.S. Patil, Radical scavenging capacities and inhibition of human prostate (LNCaP) cell proliferation by Fortunella margarita. Food Chem. 131(1), 184–191 (2012)

    CAS  Article  Google Scholar 

  5. 5.

    M. Briggs, K. Petersen, P. Kris-Etherton, Saturated fatty acids and cardiovascular disease: replacements for saturated fat to reduce cardiovascular risk. Healthcare 5(2), 29 (2017)

    PubMed Central  Article  PubMed  Google Scholar 

  6. 6.

    A. Nouri, A. Shafaghatlonbar, Chemical constituents and antioxidant activity of essential oil and organic extract from the peel and kernel parts of Citrus japonica Thunb. (kumquat) from Iran. Nat. Prod. Res. 30(9), 1093–1097 (2016)

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    S. Tan et al., Effects of Fortunella margarita fruit extract on metabolic disorders in high-fat diet-induced obese C57BL/6 mice. PLoS ONE 9(4), 1–9 (2014)

    Google Scholar 

  8. 8.

    C.E. Quijano, J.A. Pino, Volatile compounds of round kumquat (Fortunella japonica swingle) peel oil from colombia. J. Essent. Oil Res. 21(6), 483–485 (2009)

    CAS  Article  Google Scholar 

  9. 9.

    L.W. Peng et al., Effect of heat treatments on the essential oils of kumquat (Fortunella margarita Swingle). Food Chem. 136(2), 532–537 (2013)

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    H.S. Choi, Characteristic odor components of kumquat (Fortunella japonica Swingle) peel oil. J. Agric. Food Chem. 53(5), 1642–1647 (2005)

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    C. Figueiredo, J. Barroso, L. Pedro, J. Scheefeer, Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour Fragr. J. 22(November), 206–213 (2007)

    Google Scholar 

  12. 12.

    J.J. Kabara, Phenols and chelators. Food Preserv. 25, 200–214 (1991)

    Google Scholar 

  13. 13.

    G.M. Kamal, F. Anwar, A.I. Hussain, N. Sarri, M.Y. Ashraf, Yield and chemical composition of Citrus essential oils as affected by drying pretreatment of peels. Int. Food Res. J. 18(4), 1275 (2011)

    CAS  Google Scholar 

  14. 14.

    Y. Wang, W. Zeng, P. Xu, Y. Lan, R. Zhu, K. Zhong, Chemical composition and antimicrobial activity of the essential oil of Kumquat (Fortunella crassifolia Swingle). Peel 13(3), 3382–3393 (2012)

    CAS  Google Scholar 

  15. 15.

    S.N. Lou, Y.C. Lai, J. De Huang, C.T. Ho, L.H.A. Ferng, Y.C. Chang, Drying effect on flavonoid composition and antioxidant activity of immature kumquat. Food Chem. 171, 356–363 (2015)

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    S.N. Lou, Y.C. Lai, Y.S. Hsu, C.T. Ho, Phenolic content, antioxidant activity and effective compounds of kumquat extracted by different solvents. Food Chem. 197, 1–6 (2016)

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    S. Roowi, A. Crozier, Flavonoids in tropical citrus species. J. Agric. Food Chem. 59(22), 12217–12225 (2011)

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    M. Lefevre, G.R. Beecher, M.D. Gross, C.L. Keen, T.D. Etherton, Bioactive c ompounds in nutrition and health -research methodologies for establishing biological function: the antioxidant and anti-inflammatory effects of flavonoids on atherosclerosis. Annu. Rev. Nutr. 24, 511–538 (2004)

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Æ.E. Guillamo, A. Villares, Æ.M.A. Rostagno, A. Martı, Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm. Res. 58(9), 537–552 (2009)

    Article  CAS  Google Scholar 

  20. 20.

    P. Taylor, S.N. Nichenametla, T.G. Taruscio, D.L. Barney, J.H. Exon, A review of the effects and mechanisms of polyphenolics in cancer. Crit. Rev. Food Sci. Nutr. 46(2), 161–183 (2006)

    Article  CAS  Google Scholar 

  21. 21.

    K. Asres, A. Seyoum, C. Veeresham, F. Bucar, S. Gibbons, Naturally derived anti-HIV agents. Phytother. Res. 19(7), 557–581 (2005)

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Q. Chen, Z. Hu, F.Y. Yao, H. Liang, LWT - Food Science and Technology Study of two-stage microwave extraction of essential oil and pectin from pomelo peels. LWT - Food Sci. Technol. 66, 538–545 (2016)

    CAS  Article  Google Scholar 

  23. 23.

    A.D. Eaton, M.A.H. Franson, American Public Health Association (APHA), Standard Methods for the Examination of Water & Wastewater (Am. Public Heal. Assoc. Am. Water Work. Assoc. Water Environ. Fed, Washington, 2005)

    Google Scholar 

  24. 24.

    M. Guti, Batch and repeated batch cellulase production by mixed cultures of Trichoderma reesei and Aspergillus niger or Aspergillus phoenicis (2014)

  25. 25.

    P. McCue, A. Horii, K. Shetty, Mobilization of phenolic antioxidants from defatted soybean powders by Lentinus edodes during solid-state bioprocessing1 is associated with enhanced production of laccase. Innov. Food Sci. Emerg. Technol. 5(3), 385–392 (2004)

    CAS  Article  Google Scholar 

  26. 26.

    M. Balouiri, M. Sadiki, S.K. Ibnsouda, Methods for in vitro evaluating antimicrobial activity: a review. J. Pharm. Anal. 6(2), 71–79 (2016)

    PubMed  Article  Google Scholar 

  27. 27.

    A.A. Tayel et al., Antibacterial action of zinc oxide nanoparticles against foodborne pathogens. J. Food Saf. 31(2), 211–218 (2011)

    CAS  Article  Google Scholar 

  28. 28.

    R.R. Sokal, The principles and practice of statistics in biological research. Biometry 46(3), 451–554 (1995)

    Google Scholar 

  29. 29.

    L. Zhao, The characteristic analysis of several mineral contents in Chinese orange juice. Spectrosc. Spectr. Anal. 29(1), 259–262 (2009)

    CAS  Google Scholar 

  30. 30.

    M. Choi, C. Chai, J. Hill, J. Lim, J. Lee, S. Won, Journal of Pharmaceutical and Biomedical Analysis Effects of storage period and heat treatment on phenolic compound composition in dried Citrus peels (Chenpi) and discrimination of Chenpi with different storage periods through targeted metabolomic study using HPLC-DAD analysis. J. Pharm. Biomed. Anal. 54(4), 638–645 (2011)

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    D.O.L. Iu, Effect of heat treatment on the phenolic compounds and antioxidant capacity of citrus peel extract. J. Agric. Food Chem. 55(2), 330–335 (2007)

    Article  CAS  Google Scholar 

  32. 32.

    P. Rapisarda et al., Hydroxycinnamic acids as markers of italian blood orange juices. J. Agric. Food Chem. 46(2), 464–470 (1998)

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    S.C. Ho, C.C. Lin, Investigation of heat treating conditions for enhancing the anti-inflammatory activity of Citrus fruit (Citrus reticulata) Peels. J. Agric. Food Chem. 56(17), 7976–7982 (2008)

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    S.N. Lou, C.T. Ho, Phenolic compounds and biological activities of small-size citrus: Kumquat and calamondin. J. Food Drug Anal. 25(1), 162–175 (2017)

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    G.D.S.O. Martins, H.B. Zago, A.V. Costa, L.M. de Araujo Jr., J.R. de Carvalho, Chemical composition and toxicity of Citrus essential oils on Dysmicoccus brevipes (Hemiptera: Pseudococcidae). Rev. Caatinga 30(3), 811–817 (2017)

    Article  Google Scholar 

  36. 36.

    V. Sicari, M. Poiana, Comparison of the volatile component of the essential oil of Kumquat (Fortunella margarita swingle) extracted by supercritical carbon dioxide, hydrodistillation and conventional solvent extraction. J. Essent. Oil-Bearing Plants 20(1), 87–94 (2017)

    CAS  Article  Google Scholar 

  37. 37.

    M. Mkaddem, J. Bouajila, M. Ennajar, A. Lebrihi, F. Mathieu, M. Romdhane, Chemical composition and antimicrobial and antioxidant activities of mentha (longifolia L. and viridis) essential oils. J. Food Sci. 74(7), M358–M363 (2009)

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    W.C. Zeng, R.X. Zhu, L.R. Jia, H. Gao, Y. Zheng, Q. Sun, Chemical composition, antimicrobial and antioxidant activities of essential oil from Gnaphlium affine. Food Chem. Toxicol. 49(6), 1322–1328 (2011)

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    C. Summo, A. Trani, M. Faccia, F. Caponio, G. Gambacorta, Volatiles and acceptability of liqueurs from kumquat and grapefruit. Ital. J. Food Sci. 28(2), 258–270 (2016)

    CAS  Google Scholar 

  40. 40.

    M.C. Foti, Use and abuse of the DPPH radical. J. Agric. Food Chem. 63(40), 8765–8776 (2015)

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    A. Colell, A. Morales, C. Von Montfort, C. Garcia-ruiz, C. Ferna, M.E.T. Al, Redox Control of Liver Function in Health and Disease. Antioxid. Redox Signal. 12(11), 1295–1331 (2010)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  42. 42.

    N. Cotelle, Role of flavonoids in oxidative stress. Curr. Topics Med. Chem. 1(6), 569–590 (2001)

    CAS  Article  Google Scholar 

  43. 43.

    A. Kilci, D. Gocmen, Phenolic acid composition, antioxidant activity and phenolic content of tarhana supplemented with oat flour. Food Chem. 151, 547–553 (2014)

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    T. Ogiwara, K. Satoh, T. Negoro, H. Okayasu, H. Sakagami, S. Fujisawa, Inhibition of NO production by activated macrophages by phenolcarboxylic acid monomers and polymers with radical scavenging activity. Anticancer Res. 23(2B), 1317–1323 (2003)

    CAS  PubMed  Google Scholar 

  45. 45.

    M. Karamac, A. Kosiñska, R.B. Pegg, Comparison of radical-scavenging activities for selected phenolic acids. Pol. J. Food Nutr. Sci. 14(2), 165–170 (2005)

    CAS  Google Scholar 

  46. 46.

    Z. Schelz, J. Molnar, J. Hohmann, Antimicrobial and antiplasmid activities of essential oils. Fitoterapia 77(4), 279–285 (2006)

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    F. Deba, T.D. Xuan, M. Yasuda, S. Tawata, Chemical composition and antioxidant, antibacterial and antifungal activities of the essential oils from Bidens pilosa Linn. var. Radiata. Food Control 19(4), 346–352 (2008)

    CAS  Article  Google Scholar 

  48. 48.

    J.C. Matasyoh, J.J. Kiplimo, N.M. Karubiu, T.P. Hailstorks, Chemical composition and antimicrobial activity of essential oil of Tarchonanthus camphoratus. Food Chem. 101(3), 1183–1187 (2006)

    Article  CAS  Google Scholar 

  49. 49.

    K. Fisher, C. Phillips, Potential antimicrobial uses of essential oils in food: is citrus the answer? Trends Food Sci. Technol. 19(3), 156–164 (2008)

    CAS  Article  Google Scholar 

  50. 50.

    R.A. Holley, D. Patel, “Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiol. 22, 273–292 (2005)

    CAS  Article  Google Scholar 

  51. 51.

    P. Caillet, M. Lacroix, Mechanism of action of Spanish Oregano, Chinese Cinnamon, and savory essential oils against cell membranes and walls of Escherichia coli O157: H7 and Listeria monocytogenes. J. Food Protect. 69(5), 1046–1055 (2006)

    Article  Google Scholar 

  52. 52.

    A. Ultee, M.H.J. Bennik, R. Moezelaar, The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 68(4), 1561–1568 (2002)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    D. Barreca, E. Bellocco, G. Laganà, G. Ginestra, C. Bisignano, Biochemical and antimicrobial activity of phloretin and its glycosilated derivatives present in apple and kumquat. Food Chem. 160, 292–297 (2014)

    CAS  PubMed  Article  Google Scholar 

Download references


The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information



Corresponding author

Correspondence to Asmaa Abdella.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Al-Saman, M.A., Abdella, A., Mazrou, K.E. et al. Antimicrobial and antioxidant activities of different extracts of the peel of kumquat (Citrus japonica Thunb). Food Measure 13, 3221–3229 (2019).

Download citation


  • Kumquat
  • Peel
  • Volatiles
  • Flavonoids
  • Antioxidant
  • Antimicrobial
  • Mineral
  • Phenolics