Advertisement

Characterization of aroma compounds in bayberry juice by sensory evaluation and gas chromatography–mass spectrometry

  • Haiyan Yu
  • Tong Xie
  • Lanlan He
  • Jingru Xie
  • Chen Chen
  • Huaixiang TianEmail author
Original Paper
  • 10 Downloads

Abstract

The aroma features of bayberry juice were characterized in this study, which included two varieties of juice from four different areas and 28 orchards. The aroma compounds were analyzed by stir bar sorptive extraction coupled to gas chromatography–mass spectrometry (SBSE/GC–MS). In addition, four olfactory sensory attributes including sweet, acidic, fruit and flower aroma of bayberry juice were evaluated by a trained sensory panel (n = 8) using a quantitative descriptive test. The aroma compounds of great importance to the aroma characteristics were identified by correlation analysis between the odor-active compounds and the sensory attributes. The bayberry juice samples had relatively higher sensory score in fruit (5.02–5.61) and flower (4.73–5.46) aromas than sweet and acidic aromas. Seventy-three volatile components were detected in the four groups of bayberry juice, including 32 esters, 6 aldehydes, 3 ketones, 18 alcohols, 6 acids, 6 alkenes, and 2 phenols compounds. Based on the odor activity values (OAVs), 34 aroma compounds were identified as odor-active compounds. Hexyl alcohol, ethyl hexanoate, ethyl acetate, ethyl caprate, linalool, nonyl aldehyde and isoamyl acetate were identified as the key aroma compounds in the bayberry juice.

Keywords

Bayberry juice Gas chromatography–mass spectrometry Sensory evaluation Aroma characteristics 

Notes

Acknowledgements

The research was sponsored by Shanghai Gaofeng & Gaoyuan Project for University Academic Program Development.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects.

References

  1. 1.
    H. Cheng, J. Chen, S. Chen, D. Wu, D. Liu, X. Ye, Food Res. Int. 72, 8 (2015)CrossRefGoogle Scholar
  2. 2.
    L.Y. Shi, S.F. Cao, W. Chen, Z.F. Yang, Sci. Hortic. 179, 98 (2014)CrossRefGoogle Scholar
  3. 3.
    L.Y. Shi, X. Chen, W. Chen, Y.H. Zhang, Z.F. Yang, Sci. Hortic. 235, 9 (2018)CrossRefGoogle Scholar
  4. 4.
    H.Z. Huang, Y.J. Sun, S.T. Lou, H. Li, X.Q. Ye, Food Chem. 146(146), 363 (2014)CrossRefPubMedGoogle Scholar
  5. 5.
    J.S. Bao, Y.Z. Cai, M. Sun, G.Y. Wang, H. Croke, J. Agric. Food Chem. 53(6), 2327 (2005)CrossRefPubMedGoogle Scholar
  6. 6.
    Y. Zhang, X.Z. Zhou, W.Y. Tao, L. Li, C.Y. Wei, J. Duan, S.G. Chen, J. Funct. Foods. 27, 645 (2016)CrossRefGoogle Scholar
  7. 7.
    J.A. Abbott, Postharvest Biol. Technol. 15(3), 207 (1999)CrossRefGoogle Scholar
  8. 8.
    A. Lezaeta, E. Bordeu, E. Agosin, J.R. Pérez-Correa, P. Varela, Food Res. Int. 108, 595 (2018)CrossRefPubMedGoogle Scholar
  9. 9.
    H. Cheng, J.L. Chen, X. Li, J.X. Pan, S.J. Xue, D.H. Liu, X.Q. Ye, Posth. Biol. 100, 59 (2015)CrossRefGoogle Scholar
  10. 10.
    Y.X. Xu, M. Zhang, Z.X. Fang, J.C. Sun, Y.Q. Wang, Food Chem. 151, 40 (2014)CrossRefPubMedGoogle Scholar
  11. 11.
    Anonymous. GB 12313–1990. Sensory Analysis Method—Flavour Profile Test/ISO 6564–1985 Sensory Analysis—Methodology—Flavour Profile Methods (Standards Press of China, Beijing, 1990).Google Scholar
  12. 12.
    X.L. Pang, X.F. Guo, Z.H. Qin, Y.B. Yao, X.S. Hu, J.H. Wu, J. Agric. Food Chem. 60, 4179 (2012)CrossRefPubMedGoogle Scholar
  13. 13.
    J.C. Zhu, L.Y. Wang, Z.B. Xiao, Y.W. Niu, Food Chem. 245, 775 (2018)CrossRefPubMedGoogle Scholar
  14. 14.
    Y.W. Niu, Z.M. Yao, Q. Xiao, Z.B. Xiao, N. Ma, J.C. Zhu, Food Chem. 233, 204 (2017)CrossRefPubMedGoogle Scholar
  15. 15.
    J. Liu, M. Liu, C. He, H. Song, J. Guo, Y. Wang, H. Yang, X. Su, J. Sci. Food Agric. 95, 362 (2015)Google Scholar
  16. 16.
    W.H. Kang, Y. Li, Y. Xu, W.G. Jiang, Y.S. Tao, J. Food Sci. 77(10), C1030 (2012)CrossRefPubMedGoogle Scholar
  17. 17.
    D.J. Caven-Quantrill, A.J. Buglass, J. Chromatogr. A. 1117, 121 (2006)CrossRefPubMedGoogle Scholar
  18. 18.
    L.J. Gemert, Oliemans Punter & Partners BV (Huizen, Netherlands, 2003)Google Scholar
  19. 19.
    M.K. Kim, H.W. Jang, K.G. Lee, Food Chem. 267, 217 (2018)CrossRefPubMedGoogle Scholar
  20. 20.
    X.X. Sun, E. Baldwin, A. Plotto, R. Cameron, J. Manthey, C. Dorado, J.H. Bai, LWT 97, 223 (2018)CrossRefGoogle Scholar
  21. 21.
    E.M. Ahmed, R.A. Dennison, P.E. Shaw, J. Agric. Food Chem. 26, 368 (1978)CrossRefGoogle Scholar
  22. 22.
    L. Huang, L. Ma, X. Tian, J.M. Li, L.X. Li, K. Tang, Y. Xu, Food Chem. 261, 66 (2018)CrossRefPubMedGoogle Scholar
  23. 23.
    S. Panseri, S. Soncin, L.M. Chiesa, P.A. Biondi, Food Chem. 127(2), 886 (2011)CrossRefPubMedGoogle Scholar
  24. 24.
    A.J. Andreu-Sevilla, P. Mena, N. Marti, C.G. Viguera, A.A. Carbonell-Barrachina, Food Res. Int. 54(1), 246 (2013)CrossRefGoogle Scholar
  25. 25.
    I. Pereira, P. Severino, A.C. Santos, A.M. Silva, E.B. Souto, Colloid Surf. B. 171, 566 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Haiyan Yu
    • 1
  • Tong Xie
    • 1
  • Lanlan He
    • 1
  • Jingru Xie
    • 1
  • Chen Chen
    • 1
  • Huaixiang Tian
    • 1
    Email author
  1. 1.Department of Food Science and TechnologyShanghai Institute of TechnologyShanghaiChina

Personalised recommendations