Journal of Food Measurement and Characterization

, Volume 13, Issue 3, pp 2275–2287 | Cite as

Phenolic compounds and the physicochemical, nutritional, antioxidant, and functional characteristics of peel, flesh, and kernel of Medemia argun (argun palm) fruit

  • Jalaleldeen Khaleel Mohammed
  • Amer Ali Mahdi
  • Mohamed Ismael Ahmed
  • Bereket Abraha
  • Habtamu Admassu
  • Hongxin WangEmail author
Original Paper


This study investigated the nutritional and chemical compositions, as well as functional properties, of argun palm (Medemia argun) fruit. Flesh, peel, and kernel of argun fruits were analyzed based on their dry weight. The kernel contained the highest carbohydrate and fiber contents (85.93% dry weight (dwt) and 34.56% dwt, respectively), while the flesh contained substantial amounts of Ca (886.08 mg/100 g dwt) and K (3504.83 mg/100 g dwt). Argun flesh was a good source of B-complex vitamins, sucrose, glucose, xylose, and fructose. Oleic acid was the predominant monounsaturated fatty acid, while pentadecylic acid was the major saturated fatty acid in argun oil. The total essential amino acids composition of kernel, peel, and flesh were 454.40, 1094.50, and 1298.38 mg/100 g dwt, respectively. Argun peel had the highest phenolic content (43.76 mg gallic acid equivalent /g dwt) with highest antioxidant activity in terms of DPPH free radical scavenging activity expressed as the half maximal inhibitory concentration (IC50), ABTS∙+ radical cation, and ferric reducing ability of plasma (FRAP). There were significant differences among all argun fruit parts in terms of the functional properties.


Medemia argun Phenolic compounds Physiochemical and nutritional properties Amino acids Vitamins 



The authors are appreciative to Chinese Scholarship Council for financial support.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    O.M.M. Ali, Palms 60, 145–153 (2016)Google Scholar
  2. 2.
    L. Boulos, Bot Notiser 121, 117 (1968)Google Scholar
  3. 3.
    A. Morel, A.I. Hamed, W. Oleszek, A. Stochmal, R. Głowacki, B. Olas, Platelets 25, 75–80 (2014)CrossRefPubMedGoogle Scholar
  4. 4.
    M. Gibbons, T. Spanner, Palm 149, 33–35 (1999)Google Scholar
  5. 5.
    H. Ibrahim, W.J. Baker, Palms 53, 9–19 (2009)Google Scholar
  6. 6.
    R. Thomas, Revue d'ethnoécologie [En ligne] 4, 2 (2013)Google Scholar
  7. 7.
    R.B. Said, A.I. Hamed, K. Essalah, A.S. Al-Ayed, S.B. Boughdiri, M. Tangour, J. Kowalczyk, J. Mol. Struct. 11, 230–239 (2017)CrossRefGoogle Scholar
  8. 8.
    S. Martyniuk, A.I. Hamed, B. Gębala, A. Stochmal, J. Elementol. 22, 143–150 (2017)Google Scholar
  9. 9.
    AOAC, Official Methods of Analysis of the Association of Official Analytical Chemists, 19th edn. (AOAC, Gaithersburg, 2012)Google Scholar
  10. 10.
    H. Chapman, F. Pratt, Methods of Analysis for Soils, Plants and Water, 2nd edn. (California University, USA, 1982), pp. 169–170Google Scholar
  11. 11.
    X. Hu, C. Fang, L. Lu, Z. Hu, Y. Shao, Z. Zhu, J. Chromatogr. B. 1058, 19–23 (2017)CrossRefGoogle Scholar
  12. 12.
    I. Papadoyannis, G. Tsioni, V. Samanidou, J. Liq. Chromatogr. Related Technol. 20, 3203–3323 (1997)CrossRefGoogle Scholar
  13. 13.
    D. Fekkes, A. van Dalen, M. Edelman, A. Voskuilen, J. Chromatogr. B. 669, 177–186 (1995)CrossRefGoogle Scholar
  14. 14.
    S.A. Korma, X. Zou, A.H. Ali, S.M. Abed, Q. Jin, X. Wang, Food Bioprod. Process. 107, 121–130 (2018)CrossRefGoogle Scholar
  15. 15.
    A.E.O. Elkhalifa, R. Bernhardt, Food Chem. 121, 387–392 (2010)CrossRefGoogle Scholar
  16. 16.
    K. Maninder, K.S. Sandhu, N. Singh, Food Chem. 104, 259–267 (2007)CrossRefGoogle Scholar
  17. 17.
    G. Crosbie, J. Cereal Sci. 13, 145–150 (1991)CrossRefGoogle Scholar
  18. 18.
    K. Narayana, M. Narasinga Rao, J. Food Sci. 47, 1534–1538 (1982)CrossRefGoogle Scholar
  19. 19.
    W. Aboshora, Z. Lianfu, M. Dahir, M.A. Gasmalla, A. Musa, E. Omer, M. Thapa, J. Food. Nutr. Res. 2, 180–186 (2014)CrossRefGoogle Scholar
  20. 20.
    G.L. Chen, S.G. Chen, Y.Y. Zhao, C.X. Luo, J. Li, Y.Q. Gao, Ind. Crops Prod. 57, 150–157 (2014)CrossRefGoogle Scholar
  21. 21.
    N.G. Baydar, H. Baydar, Ind. Crops Prod. 41, 375–380 (2013)CrossRefGoogle Scholar
  22. 22.
    G.L. Chen, S.G. Chen, Y.Q. Xie, F. Chen, Y.Y. Zhao, C.X. Luo, Y.Q. Gao, J. Funct. Foods. 17, 243–259 (2015)CrossRefGoogle Scholar
  23. 23.
    Z. Lou, J. Chen, F. Yu, H. Wang, X. Kou, C. Ma, S. Zhu, LWT. 80, 371–377 (2017)CrossRefGoogle Scholar
  24. 24.
    M.C. Coimbra, N. Jorge, Food Res. Int. 44, 2139–2142 (2011)CrossRefGoogle Scholar
  25. 25.
    T.N.H. Lai, C. André, H. Rogez, E. Mignolet, T.B.T. Nguyen, Y. Larondelle, Food Chem. 168, 410–416 (2015)CrossRefPubMedGoogle Scholar
  26. 26.
    M. Al-Farsi, C. Alasalvar, M. Al-Abid, K. Al-Shoaily, M. Al-Amry, F. Al-Rawahy, Food Chem. 104, 943–947 (2007)CrossRefGoogle Scholar
  27. 27.
    M.O. Aremu, O. Olaofe, T.E. Akintayo, Pakistani. J. Nutr. 5, 34–38 (2006)CrossRefGoogle Scholar
  28. 28.
    A. Al-Farga, H. Zhang, A. Siddeeg, M. Shamoon, M.V. Chamba, N. Al-Hajj, Food chem. 211, 268–273 (2016)CrossRefPubMedGoogle Scholar
  29. 29.
    WHO, Trace Elements in Human Nutrition and Health (World Health Organization, Geneva, 1996)Google Scholar
  30. 30.
    S. Langer, J.K. Lodge, J. Chromatogr. B. 960, 73–81 (2014)CrossRefGoogle Scholar
  31. 31.
    H.D. Riordan, N. Mikirova, P.R. Taylor, C.A. Feldkamp, J.J. Casciari, Food. Nutr. Sci. 3, 1238 (2012)Google Scholar
  32. 32.
    N.W. Chang, P.C. Huang, Lipids 33, 481–487 (1998)CrossRefPubMedGoogle Scholar
  33. 33.
    N. Singh, M. Kaur, K.S. Sandhu, H.S. Guraya, Starch-Stärke 56, 535–544 (2004)CrossRefGoogle Scholar
  34. 34.
    M. Kaur, P. Kaushal, K.S. Sandhu, J. Food Sci. Technol. 50, 94–100 (2013)CrossRefPubMedGoogle Scholar
  35. 35.
    H.T. Chan, R. Bhat, A.A. Karim, J. Agric. Food. Chem. 57, 5965–5970 (2009)CrossRefPubMedGoogle Scholar
  36. 36.
    A. Kaur, N. Singh, R. Ezekiel, H.S. Guraya, Food Chem. 101, 643–651 (2007)CrossRefGoogle Scholar
  37. 37.
    H.D. Belitz, W. Grosch, Food Chemistry (Springer, New York, 1999), pp. 748–800CrossRefGoogle Scholar
  38. 38.
    M.J.Y. Lin, E. Humbert, F. Sosulski, J. Food Sci. 39, 368–370 (1974)CrossRefGoogle Scholar
  39. 39.
    Y. Njintang, J. Scher, C. Mbofung, J. Food Eng. 86, 294–305 (2008)CrossRefGoogle Scholar
  40. 40.
    M.P. Kähkönen, A.I. Hopia, H.J. Vuorela, J.P. Rauha, K. Pihlaja, T.S. Kujala, M. Heinonen, J. Agric. Food. Chem. 47, 3954–3962 (1999)CrossRefPubMedGoogle Scholar
  41. 41.
    J.-W. Lin, H.-M. Chiang, Y.-C. Lin, K.-C. Wen, J. Food Drug Anal. 16 (2) (2008)Google Scholar
  42. 42.
    A.S. Meyer, E.N. Frankel, Methods Enzymology, (Elsevier, New York, 2001) pp. 256–265Google Scholar
  43. 43.
    I.F. Benzie, J.J. Strain, Anal. Biochem. 239, 70–76 (1996)CrossRefPubMedGoogle Scholar
  44. 44.
    G.C. Yen, H.Y. Chen, J. Agric. Food. Chem. 43, 27–32 (1995)CrossRefGoogle Scholar
  45. 45.
    T. Henderson, P.S. Nigam, R.K. Owusu-Apenten, Food Chem. 174, 119–123 (2015)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Food Science and Technology, School of Food Science and TechnologyJiangnan UniversityWuxiChina
  2. 2.National Engineering Research Center for Functional FoodJiangnan UniversityWuxiChina
  3. 3.Ministry of Agriculture, Animal Resources and IrrigationKhartoumSudan
  4. 4.Department of Food Science and Technology, Faculty of AgricultureSana‘a UniversitySana‘aYemen
  5. 5.Department of Food Process EngineeringAddis Ababa Science and Technology UniversityAddis AbabaEthiopia
  6. 6.Department of Food Science and TechnologyNyala Technical CollegeNyalaSudan
  7. 7.Department of Marine BiotechnologyMassawa College of Marine Science and TechnologyMassawaEritrea

Personalised recommendations