Skip to main content
Log in

Peeling of key lime (Citrus aurantifolia) fruit aided with vacuum infusion, different levels of pectinase concentration and soaking time

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The application of enzymatic peeling technology aided with vacuum infusion has been studied extensively in this study to ease the peeling process of key lime (Citrus aurantifolia) fruit. Through response surface methodology, the optimum parameters such as vacuum pressure (450–600 mmHg), pectinase concentration (0.5–1.0%, v/v), duration of soaking time (15–45 min) and their effects on physicochemical properties of key lime fruit have been determined. The optimal conditions determined in this study were 600 mmHg of vacuum pressure, 0.93% v/v of pectinase concentration and 45 min of soaking time. The physicochemical properties analysed such as colour, pH, titratable acidity, total soluble solids, moisture content, and ascorbic acid content show no significant (p > 0.05) effect of enzymatic-peeling on quality parameters of key lime fruit products. The intensity of puree colour was significantly (p ≤ 0.05) improved by the vacuum-aided enzymatic treatment. Overall, vacuum-aided enzymatic treatment is an improved peeling method compared to the conventional method as it simplifies the process, reduces processing time and retains quality parameters of the key lime fruit products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M.S. Ladaniya, Citrus Fruit: Biology, Technology, and Evaluation, 1st edn. (Elsevier Inc., Atlanta, 2008), pp. 1–10

    Book  Google Scholar 

  2. USDA, Brazil drives global orange production decline. https://public.govdelivery.com/accounts/USDAFAS/subscriber/new. Accessed 26 Jan 2018

  3. A. Perez, K. Plattner, Fruits and tree nuts outlook (FTS-357) USDA. Accessed 26 Sept 2014

  4. MOA, Third National Agricultural Policy (1998-2010). Ministry of Agriculture and Agro-based Industry Malaysia (2016)

  5. SABA, 38 benefits of lime (Kaccha nimbu) for skin, hair, and health. http://www.stylecraze.com/articles/benefits-of-lime-for-skin-hair-and-health. Accessed 31 Aug 2018

  6. Z. Zou, W. Xi, Y. Hu, C. Nie, Z. Zhou, Food Chem. 196, 885 (2016)

    Article  CAS  Google Scholar 

  7. S.K. Fagodia, H.P. Singh, D.R. Batish, R.K. Kohli, Ind. Crop Prod. 108, 708 (2017)

    Article  CAS  Google Scholar 

  8. A. Hazniza, A. Osman, H.M. Ghazali, R.A. Rahman, H. Adnan, A. Osman, R.A. Rahman, J. Trop. Agric. Sci. 37(1), 67 (2009)

    Google Scholar 

  9. I. Toker, A. Bayιndιrlι, Lebenson Wiss Technol. 36(2), 215 (2003)

    Article  CAS  Google Scholar 

  10. M. Noguchi, Y. Ozaki, J. Azuma, Jpn. Agric. Res. Q. 49(4), 313 (2015)

    Article  CAS  Google Scholar 

  11. M.T. Pretel, P. Sanchez-Bel, I. Egea, F. Romojaro, Tree For. Sci. Biotechnol. 2(Special Issue 1), 52 (2008)

    Google Scholar 

  12. M.T. Pretel, A. Amoros, M.A. Botella, M. Serrano, F. Romojaro, J. Sci. Food Agric. 84, 86 (2005)

    Article  Google Scholar 

  13. A. Hassan, Z. Othman, J. Siriphanich, Postharvest Biology and Technology of Tropical and Subtropical Fruits, 1st edn. (Woodhead Publishing, Cambridge, 2011), pp. 194–217

    Book  Google Scholar 

  14. M.T. Pretel, P. Lozano, F. Riquelme, F. Romojaro, Process Biochem. 32(1), 43 (1997)

    Article  CAS  Google Scholar 

  15. M.J. Rodrigo, B. Alquezar, E. Alos, J. Lado, L. Zacarias, Sci. Hortic. 163, 46 (2013)

    Article  CAS  Google Scholar 

  16. F. Liu, A. Osman, S. Yusof, H.M. Ghazali, J. Food Process. Preserv. 28(5), 336 (2004)

    Article  Google Scholar 

  17. P.B. Pathare, U.L. Opara, F.A.J. Al-Said, Food Bioprocess Technol. 6(1), 36 (2013)

    Article  CAS  Google Scholar 

  18. R. Assawarachan, A. Noomhorm, Int. J. Agric. Biol. Eng. 3(1), 74 (2010)

    Google Scholar 

  19. R. Shamsudin, I.O. Mohamed, N.K.M. Yaman, J. Food Eng. 66, 395 (2005)

    Article  Google Scholar 

  20. S. Ranganna, Handbook of Analysis and Quality Control for Fruit and Vegetable Products, 2nd edn. (Tata McGraw Hill Publishing Company Limited, New Delhi, 1997), pp. 11–12

    Google Scholar 

  21. AOAC, Official Methods of Analysis, 18th edn. (Association of Official Analytical Chemists, Virginia, 2005)

    Google Scholar 

  22. AOAC, Official Methods of Analysis, 17th edn. (Association of Official Analytical Chemists, Virginia, 2000)

    Google Scholar 

  23. J. Bruemmer, A. Griffin, Florida State Hortic. Soc. 91, 112 (1978)

    CAS  Google Scholar 

  24. Y. Liu, E. Heying, S.A. Tanumihardjo, Compr. Rev. Food Sci. Food Saf. 11(6), 530 (2012)

    Article  CAS  Google Scholar 

  25. S.J. Kays, Postharvest Biol. Technol. 15(3), 233 (1999)

    Article  Google Scholar 

  26. C. Sanchez, A.B. Baranda, I. Martínez de Maranon, Food Chem. 163, 37 (2014)

    Article  CAS  Google Scholar 

  27. L. Wang, Q. Mu, W. Li, S. Wang, S. Zhang, J. Food Sci. 34(20), 312 (2013)

    Google Scholar 

  28. Z.W. Cui, S.Y. Xu, D.W. Sun, Drying Technol. 22(3), 563 (2004)

    Article  Google Scholar 

  29. P. Sanchez-Bel, I. Egea, M. Serrano, A. Romojaro, M.T. Pretel, Food Sci. Technol. Int. 18(1), 63–72 (2012)

    Article  CAS  Google Scholar 

  30. K.L. Penniston, S.Y. Nakada, R.P. Holmes, D.G. Assimos, J. Endourol. 22(3), 567 (2008)

    Article  Google Scholar 

  31. Y. Yamaki, J. Jpn. Soc. Hortic. Sci. 57, 568 (1989)

    Article  Google Scholar 

  32. R.L. Shrestha, D. Datta, D.M. Dhakal, K.P. Gautum, S. Paudyal, Am. J. Plant Sci. 3, 1688 (2012)

    Article  CAS  Google Scholar 

  33. S.S. Manjunatha, P.S. Raju, A.S. Bawa, Czech J. Food Sci. 5, 456 (2012)

    Article  Google Scholar 

  34. F. Vesali, M. Gharibkhani, M.H. Komarizadeh, Aust. J. Crop Sci. 5(2), 111 (2011)

    Google Scholar 

  35. S.S. Manjunatha, P.S. Raju, A.S. Bawa, J. Food Sci. Technol. 51(11), 3038 (2014)

    Article  CAS  Google Scholar 

  36. A.M. Pisoschi, A.F. Danet, S. Kalinowski, J. Autom. Methods Manag. Chem. 2008, 1 (2008)

    Article  Google Scholar 

  37. A. Bisconsin-junior, J. Fernando, R. Alvarenga, A. Rosenthal, M. Monteiro, J. Food Process. Technol. 6(2), 1 (2015)

    Google Scholar 

  38. M.K. Bull, K. Zerdin, E. Howe, D. Goicoechea, P. Paramanandhan, R. Stockman, C.M. Stewart, Innov. Food Sci. Emerg. Technol. 5(2), 135 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the Universiti Putra Malaysia and mentoring from teaching staff and laboratory staff of the Faculty of Food Science and Technology. Authors extend thanks to colleagues for editing the manuscript before submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norhayati Hussain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, N., Ishak, I., Kamal, M.A.A. et al. Peeling of key lime (Citrus aurantifolia) fruit aided with vacuum infusion, different levels of pectinase concentration and soaking time. Food Measure 13, 2095–2105 (2019). https://doi.org/10.1007/s11694-019-00130-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00130-7

Keywords

Navigation