Skip to main content
Log in

Using deep learning and hyperspectral imaging to predict total viable count (TVC) in peeled Pacific white shrimp

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In this study, deep learning method coupled with near-infrared (NIR) hyperspectral imaging (HSI) technique was used for nondestructively determining total viable count (TVC) of peeled Pacific white shrimp. Firstly, stacked auto-encoders (SAE) was conducted as a big data analytical method to extract 20 deep hyperspectral features from NIR hyperspectral image (900–1700 nm) of peeled shrimp stored at 4 °C, and the extracted features were used to predict TVC by fully-connected neural network (FNN). The SAE–FNN method obtained high prediction accuracy for determining TVC, with R 2P  = 0.927. Additionally, TVC spatial distribution of peeled shrimp during storage could be visualized via applying the established SAE–FNN model. The results demonstrate that SAE–FNN combined with HSI technique has a potential for non-destructive prediction of TVC in peeled shrimp, which supply a novel method for the hygienic quality and safety inspections of shrimp product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Valdimarsson, H. Einarsson, B. Gudbjörnsdottir, H. Magnusson, Microbiological quality of Icelandic cooked-peeled shrimp (Pandalus borealis). Int. J. Food Microbiol. 45(2), 157–161 (1998)

    Article  CAS  Google Scholar 

  2. X. Carrión-Granda, I. Fernández-Pan, I. Jaime, J. Rovira, J.I. Maté, Improvement of the microbiological quality of ready-to-eat peeled shrimps (Penaeus vannamei) by the use of chitosan coatings. Int. J. Food Microbiol. 232, 144–149 (2016)

    Article  Google Scholar 

  3. L. Huang, J. Zhao, Q. Chen, Y. Zhang, Rapid detection of total viable count (TVC) in pork meat by hyperspectral imaging. Food Res. Int. 54, 821–828 (2013)

    Article  CAS  Google Scholar 

  4. H. Duan, R. Zhu, X. Yao, E. Lewis, Sensitive variables extraction, non-destructive detection and visualization of total viable count (TVC) and pH in vacuum packaged lamb using hyperspectral imaging. Anal. Methods 9(21), 3172–3183 (2017)

    Article  CAS  Google Scholar 

  5. F. Tao, Y. Peng, C.L. Gomes, K. Chao, J. Qin, A comparative study for improving prediction of total viable count in beef based on hyperspectral scattering characteristics. J. Food Eng. 162, 38–47 (2015)

    Article  Google Scholar 

  6. D. Wu, D.W. Sun, Potential of time series-hyperspectral imaging (TS-HSI) for non-invasive determination of microbial spoilage of salmon flesh. Talanta 111, 39–46 (2013)

    Article  CAS  Google Scholar 

  7. J.H. Cheng, D.W. Sun, Rapid and non-invasive detection of fish microbial spoilage by visible and near infrared hyperspectral imaging and multivariate analysis. LWT Food Sci. Technol. 62, 1060–1068 (2015)

    Article  CAS  Google Scholar 

  8. Z.E. Sikorski, A. Kolakowska, J.R. Burt, Postharvest biochemical and microbial changes, in Seafood: Resources, Nutritional Composition and Preservation, ed. by Z.E. Sikorski (CRC Press, Boca Raton, 1990), pp. 55–76

    Google Scholar 

  9. Q. Dai, D.W. Sun, Z. Xiong, J.H. Cheng, X.A. Zeng, Recent advances in data mining techniques and their applications in hyperspectral image processing for the food industry. Compr. Rev. Food. Sci. Food Saf. 13, 891–905 (2014)

    Article  Google Scholar 

  10. G. ElMasry, D.W. Sun, P. Allen, Non-destructive determination of water-holding capacity in fresh beef by using NIR hyperspectral imaging. Food Res. Int. 44(9), 2624–2633 (2011)

    Article  Google Scholar 

  11. D. Wu, H. Shi, Y. He, X. Yu, Y. Bao, Potential of hyperspectral imaging and multivariate analysis for rapid and non-invasive detection of gelatin adulteration in prawn. J. Food Eng. 119(3), 680–686 (2013)

    Article  CAS  Google Scholar 

  12. M. Kamruzzaman, G. ElMasry, D.W. Sun, P. Allen, Nondestructive assessment of instrumental and sensory tenderness of lamb meat using NIR hyperspectral imaging. Food Chem. 141(1), 389–396 (2013)

    Article  CAS  Google Scholar 

  13. Y. Roggo, A. Edmond, P. Chalus, M. Ulmschneider, Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms. Anal. Chim. Acta 535, 79–87 (2005)

    Article  CAS  Google Scholar 

  14. Y. LeCun, Y. Bengio, G.E. Hinton, Deep learning. Nature 521, 436–444 (2015)

    Article  CAS  Google Scholar 

  15. W. Zhao, Z. Guo, J. Yue, X. Zhan, L. Luo, On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery. Int. J. Remote Sens. 36(13), 3368–3379 (2015)

    Article  Google Scholar 

  16. J. Yang, Y.Q. Zhao, J.C.W. Chan, Learning and transferring deep joint spectral–spatial features for hyperspectral classification. IEEE Trans. Geosci. Remote Sens. 55, 4729–4742 (2017)

    Article  Google Scholar 

  17. X. Yu, L. Tang, X. Wu, H. Lu, Nondestructive freshness discriminating of shrimp using visible/near-infrared hyperspectral imaging technique and deep learning algorithm. Food Anal. Meth. 11(3), 768–780 (2017)

    Article  Google Scholar 

  18. H.I. Suk, S.W. Lee, D. Shen, Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct. Funct. 220(2), 841–859 (2015)

    Article  Google Scholar 

  19. E. Biganzoli, P. Boracchi, L. Mariani, E. Marubini, Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach. Stat. Med. 17(10), 1169–1186 (1998)

    Article  CAS  Google Scholar 

  20. A. Rady, N. Ekramirad, A.A. Adedeji, M. Li, R. Alimardani, Hyperspectral imaging for detection of codling moth infestation in GoldRush apples. Postharvest Biol. Technol. 129, 37–44 (2017)

    Article  CAS  Google Scholar 

  21. S. Wold, M. Sjostrom, L. Eriksson, PLS-regression: a basic tool of chemometrics. Chemom. Intell. Lab. Syst. 58, 109–130 (2001)

    Article  CAS  Google Scholar 

  22. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, É. Duchesnay, Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    Google Scholar 

  23. J.A.K. Suykens, J. De Brabanter, L. Lukas, J. Vandewalle, Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing. 48, 85–105 (2002)

    Article  Google Scholar 

  24. C. Tao, H. Pan, Y. Li, Z. Zou, Unsupervised spectral–spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification. IEEE Geosci. Remote Sens. Lett. 12(12), 2438–2442 (2015)

    Article  Google Scholar 

  25. L. Huang, L. Wang, Accelerated Monte Carlo simulations with restricted Boltzmann machines. Phys. Rev. B (2017). https://doi.org/10.1103/PhysRevB.95.035105

    Article  PubMed  PubMed Central  Google Scholar 

  26. C. Xing, L. Ma, X. Yang, Stacked denoise autoencoder based feature extraction and classification for hyperspectral images. J. Sens. (2016). https://doi.org/10.1155/2016/3632943

    Article  Google Scholar 

  27. K. Gopalakrishnan, S.K. Khaitan, A. Choudhary, A. Agrawal, Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection. Constr. Build. Mater. 157, 322–330 (2017)

    Article  Google Scholar 

  28. F. Chollet, Keras: theano-based deep learning library. https://github.com/fchollet. Accessed 4 Sept 2018

  29. R.A.V. Rossel, R.N. McGlynn, A.B. McBratney, Determining the composition of mineral-organic mixes using UV-vis-NIR diffuse reflectance spectroscopy. Geoderma 137, 70–82 (2006)

    Article  Google Scholar 

  30. H. Mu, H. Chen, X. Fang, J. Mao, H. Gao, Effect of cinnamaldehyde on melanosis and spoilage of Pacific white shrimp (Litopenaeus vannamei) during storage. J. Sci. Food Agric. 92, 2177–2182 (2012)

    Article  CAS  Google Scholar 

  31. A. Cadun, S. Cakli, D. Kisla, A study of marination of deepwater pink shrimp (Parapenaeus longirostris, Lucas, 1846) and its shelf life. Food Chem. 90, 53–59 (2005)

    Article  CAS  Google Scholar 

  32. D. Wu, H. Shi, S. Wang, Y. He, Y. Bao, K. Liu, Rapid prediction of moisture content of dehydrated prawns using online hyperspectral imaging system. Anal. Chim. Acta 726, 57–66 (2012)

    Article  CAS  Google Scholar 

  33. I. Murray, P.C. Williams, Chemical principles of near-infrared technology, in Near-infrared Technology in the Agricultural and Food Industries, 2nd edn., ed. by P.C. Williams, K. Norris (American Association of Cereal Chemists, St. Paul, 2001), pp. 23–26

    Google Scholar 

  34. S.C. Flores, D.L. Crawford, Postmortem quality changes in iced Pacific shrimp (Pandalus jordani). J. Food Sci. 38(4), 575–579 (1973)

    Article  Google Scholar 

  35. D.F. Barbin, G. ElMasry, D.W. Sun, P. Allen, N. Morsy, Non-destructive assessment of microbial contamination in porcine meat using NIR hyperspectral imaging. Innov. Food Sci. Emerg. Technol. 17, 180–191 (2013)

    Article  CAS  Google Scholar 

  36. W. Huang, G. Song, H. Hong, K. Xie, Deep architecture for traffic flow prediction: deep belief networks with multitask learning. IEEE Trans. Intell. Transp. Syst. 15(5), 2191–2201 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by Ningbo Science and Technology Special Project of China, Grant Number (2017C110002); Natural Science Foundation of China, Grant Number (31201446); Zhejiang Provincial Natural Science Foundation of China, under the following Grant Numbers (LY17C190008, LY16F030012 and LY15F030016); Ningbo Science Foundation of China, Grant Number (2017A610118).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinjie Yu or Jianping Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Yu, X., Wen, S. et al. Using deep learning and hyperspectral imaging to predict total viable count (TVC) in peeled Pacific white shrimp. Food Measure 13, 2082–2094 (2019). https://doi.org/10.1007/s11694-019-00129-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00129-0

Keywords

Navigation