Synthesis and application of cerium oxide nanoparticles for preconcentration of trace levels of copper in water and foods followed by flame atomic absorption spectrometry

Abstract

In the present work, microwave method has been employed for synthesis of cerium oxide nanoparticles (CeO2 NPs) and it was used for preconcentration of trace levels of Cu(ІІ) in different real samples followed by flame atomic absorption spectrometry. The results of X-ray diffraction spectroscopy (XRD) and transmission electron microscopy (TEM) show that CeO2 NPs were successfully synthesized in the size of 10–20 nm. By using a batch method, CeO2 NPs have been used as efficient, easy to synthesize and efficient adsorbent for highly rapid solid phase extraction of Cu(ІІ) in different real samples for the first time. The effects of different parameters affecting the extraction efficiency such as pH, extraction time, type and concentration of desorbent solvent and desorbent time were completely investigated and optimum conditions selected. Under the optimum conditions, the calibration curve was linear in the range of 10–300 ng cm−3 Cu(ІІ) with correlation coefficient of 0.998. The relative standard (RSD, %) based on six replicate analysis of 50 ng cm−3 Cu(ІІ) was 3.3%. In order to check the accuracy of the proposed method certified reference material, CRM-TMDW and GBW07605 tea reference material, with the known amounts of 20 ng cm−3 Cu(ІІ) and 17.3 ± 0.3 µg g−1 Cu, respectively, were analyzed and the obtained results (19.5 ± 1.0 ng cm−3 Cu(ІІ) for CRM-TMDW and 17.0 ± 0.7 µg g−1 Cu) show very good agreement with the CRM certified values (Student t-test, 95% confidence limit, n = 5). Finally the proposed method was successfully applied for determination of trace levels of Cu(ІІ) in different water (tap, spring and river) and food samples (black tea, lentil, sesame, cabbage, wheat and liver).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    I. Iakovidis, I. Delimaris, S.M. Piperakis, Mol. Biol. Int. 2011, Article ID 594529, 1–13 (2011)

  2. 2.

    M. Morcrette, P. Rozier, L. Dupont, E. Mugnier, L. Sannier, J. Galy, J.M. Tarascon, Nat. Mater. 2, 755–761 (2003)

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    G. Joseph, K.J.A. Kundig, Copper: Its Trade, Manufacture, Use, and Environmental Status (ASM International, Materials Park, 1999), pp. 331–377

    Google Scholar 

  4. 4.

    E.D. Harris, J. Nutr. 122(3S), 636–640 (1992)

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    S.H. Nile, S.W. Park, Nutrition 30(2), 134–144 (2014)

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    J.Y. Uriu-Adams, C.L. Keen, Mol. Aspects Med. 26(4–5), 268–298 (2005)

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Z. Al Othman, Y. Emre Unsal, M. Habila, A. Shabaka, M. Tuzen, M. Soylak, Anal. Lett. 48(11), 1738–1750 (2015)

    Article  CAS  Google Scholar 

  8. 8.

    S. Bahar, R. Zakerian, J. Braz. Chem. Soc. 23(6), 1166–1173 (2012)

    Article  CAS  Google Scholar 

  9. 9.

    P. Liang, J. Yang, J. Food Compos. Anal. 23(1), 95–99(2010).

    Article  CAS  Google Scholar 

  10. 10.

    S.A.M. Fathi, M.R. Yaftian, J. Colloid Interface Sci. 334(2), 167–170 (2009)

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    M. Ghaedi, A. Shokrollahi, F. Ahmadi, H.R. Rajabi, M. Soylak, J. Hazard. Mater. 150(3), 533–540 (2008)

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Z. Es’haghi, R. Azmoodeh, Arab. J. Chem. 3(1), 21–26 (2010)

    Article  CAS  Google Scholar 

  13. 13.

    M.A. Habila, Z.A. ALOthman, E. Yilmaz, M. Soylak, Int. J. Environ. Anal. Chem. 98(2), 171–181 (2018)

    Article  CAS  Google Scholar 

  14. 14.

    R. Saxena, P.L. Meena, RSC Adv. 4(39), 20216–20225 (2014)

    Article  CAS  Google Scholar 

  15. 15.

    V. Yilmaz, Z. Arsalan, O. Hazer, H. Yilmaz, Microchim. J. 114, 65–72 (2014)

    Article  CAS  Google Scholar 

  16. 16.

    M. Tuzen, K.O. Saygi, M. Soylak, J. Hazard. Mater. 152(2), 632–639 (2008)

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    M. Soylak, O. Ercan, J. Hazard. Mater. 168(2–3), 1527–1531 (2009)

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    R.S.D. Castro, L. Caetano, G. Ferreira, P.M. Padiha, M.J. Saeki, L.F. Zara, M.A.U. Martines, G.R. Castro, Ind. Eng. Chem. Res. 50(6), 3446–3451 (2011)

    Article  CAS  Google Scholar 

  19. 19.

    M. Ghaedi, F. Ahmadi, Z. Tavakoli, M. Montazerozohori, A. Khanmohammadi, M. Soylak, J. Hazard. Mater. 152(3), 1248–1255 (2008)

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    M. Ghaedi, F. Ahmadi, M. Soylak, J. Hazard. Mater. 147(1–2), 226–231 (2007)

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    M.H. Mashhadizadeh, M. Pesteh, M. Talakesh, I. Sheikhshoaie, M. Mazloum Ardakani, M.A. Karimi, Spectrochim. Acta Part B 63(8), 885–888 (2008)

    Article  CAS  Google Scholar 

  22. 22.

    F. Xie, X. Lin, X. Wu, Z. Xie, Talanta 74(4), 836–843 (2008)

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    M.H. Mashhadizadeh, Z. Karimi, J. Hazard. Mater. 190(1–3), 1023–1029 (2011)

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    L. He, Y. Su, J. Lanhong, S. Shi, J. Rare Earth 33(8), 791–799 (2015)

    Article  CAS  Google Scholar 

  25. 25.

    S. Mohajer, M. Chamsaz, E.K. Goharshadi, S. Samiee, Sep. Sci. Technol. 52, 1652–1659 (2017)

    Article  CAS  Google Scholar 

  26. 26.

    M. Bost, S. Houdart, M. Oberli, E. Kalonji, J.F. Huneau, I. Margaritis, J. Trace Elem. Med. Biol. 35, 107–115 (2016)

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    N. Pathak, A.K. Rai, R. Kumari, K.V. Bhat, Pharmacogn. Rev. 8(16), 147–155 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    B. Kratochvil, D. Wallace, J.K. Taylor, Anal. Chem. 56(5), 113–129 (1984)

    Article  Google Scholar 

  29. 29.

    F. Javedani-Asleh, M. Eftekhari, M. Chamsaz, Spectrosc. Lett. 49, 420–425 (2016)

    Article  CAS  Google Scholar 

  30. 30.

    M. Chamsaz, A. Atarodi, M. Eftekhari, S. Asadpour, M. Adibi, J. Adv. Res. 4(1), 35–41 (2013)

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    M. Eftekhari, M. Gheibi, M. Akrami, F. Iranzad, New J. Chem. 42, 1159–1168 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ferdowsi University of Mashhad, Iran.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Chamsaz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Majeed, H.J., Eftekhari, M., Gheibi, M. et al. Synthesis and application of cerium oxide nanoparticles for preconcentration of trace levels of copper in water and foods followed by flame atomic absorption spectrometry. Food Measure 13, 339–346 (2019). https://doi.org/10.1007/s11694-018-9949-3

Download citation

Keywords

  • Cerium oxide nanoparticles
  • Solid phase extraction
  • Microwave method
  • Copper ion(ІІ)
  • Flame atomic absorption spectrometry
  • Food and water samples