Chemical composition and antioxidant activity of commercial flours from Ceratonia siliqua and Prosopis spp.


Ceratonia siliqua and some species of Prosopis (Fabaceae family) are commonly known as carob trees. The flours obtained from their pods are used in the food industry, as cocoa substitute in the confectionery and also used in beverages and mixed with products derived from cereals. The aim of this study was to compare and characterize the physical and chemical properties, specially the antioxidant activities, of the two commercial carob flours. Commercial Prosopis spp. (mainly from P. alba) flour exhibited high content of protein, starch and fat, while commercial flour from C. siliqua had a lower content of these compounds, but higher antioxidant activity. By nuclear magnetic resonance (NMR) the aqueous extracts of the two carob flours were analysed and concluded that they had similar content of sucrose, but C. siliqua had more monosaccharides and pinitol. This important cyclitol has beneficial physiological effects, improving the glycaemic level and, thus, having a great potential in the food industry. We conclude that the commercial flour of C. siliqua has a better nutritional potential than that of Prosopis spp., owing to dietary fiber, total phenols, pinitol and antioxidant activity. Our results corroborate the nutritional benefits of the commercial supplements already available for healthy food formulations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. 1.

    N. Winer, Int. Tree Crop 1, 15–26 (1980)

    Article  Google Scholar 

  2. 2.

    A.K. Yousif, H.M. Alghzawi, Food Chem. 69, 283–287 (2000)

    Article  CAS  Google Scholar 

  3. 3.

    D.P. Makris, P. Kefalas, Food Technol. Biotechnol. 42, 105–108 (2004)

    CAS  Google Scholar 

  4. 4.

    A.V. Stavroula, G. Ouzounidou, M. Ozturk, G. Görk, Proc. Soc. Behav. Sci. 19, 750–755 (2011)

    Article  Google Scholar 

  5. 5.

    FAOSTAT (2017) Accessed June 2018

  6. 6.

    M.L. Cardozo, R.M. Ordoñez, I.C. Zampini, A.S.C.G. Dibenedetto, M.I. Isla, Food Res. Int. 43, 1505–1510 (2010)

    Article  CAS  Google Scholar 

  7. 7.

    P. Felker, G. Takeoka, L. Dao, Food Rev. Int. 29, 49–66 (2013)

    Article  CAS  Google Scholar 

  8. 8.

    H.E. Hajaji, N. Lachkar, K. Alaoui, Y. Cherrah, A. Farah, A. Ennabili, B.E. Bali, M. Lachkar, Rec. Nat. Prod. 4, 193–204 (2010)

    Google Scholar 

  9. 9.

    F.A. Ayaz, H. Torun, S. Ayaz, P.J. Correia, M. Alaiz, C. Sanz, J. Gruz, M. Strnad, Food Qual. 30, 1040–1055 (2007)

    Article  CAS  Google Scholar 

  10. 10.

    L. Bravo, N. Grados, F. Saura-Calixto, Sci. Food Agric. 65, 303–306 (1994)

    Article  CAS  Google Scholar 

  11. 11.

    S. Marakis, Food Sci. Technol. 33, 365–383 (1996)

    CAS  Google Scholar 

  12. 12.

    D. Prokopiuk, D. Cruz, N. Grados, O. Garro, A. Chirat, Multequina 9, 35–45 (2000)

    Google Scholar 

  13. 13.

    D. Prokopiuk, N.M. Navarrete, A. Andrés, A. Chiralt, G. Cruz, Int. Food Prop. 13, 692–701 (2010)

    Article  Google Scholar 

  14. 14.

    C. Bengoechea, A. Romero, A. Villanueva, G. Moreno, M.B. Alaiz, F. Millán, A. Guerrero, M.C. Puppo, Food Chem. 107, 675–683 (2008)

    Article  CAS  Google Scholar 

  15. 15.

    M.V. Salinas, B. Carbas, C. Brites, M.C. Puppo, Food Bioprocess Technol. 8, 1561–1570 (2015)

    Article  CAS  Google Scholar 

  16. 16.

    M.G. Bernardo-Gil, R. Roque, B. Luisa, L.B. Roseiro, L.C. Duarte, F. Girio, P. Esteves, Supercrit. Fluids 59, 36–42 (2011)

    Article  CAS  Google Scholar 

  17. 17.

    R. Avallone, M. Plessi, M. Baraldi, A. Monzani, Food Compos. Anal. 10, 166–172 (1997)

    Article  CAS  Google Scholar 

  18. 18.

    S.K. Choge, N.M. Pasiecznik, M. Harvey, J. Wright, S.Z. Awan, P.J.C. Harris, Water SA 33, 419–424 (2007)

    Article  CAS  Google Scholar 

  19. 19.

    S. Gruendel, A.L. Garcia, B. Otto, K. Wagner, M. Bidlingmaier, L. Burget, M.O. Weickert, G. Dongowski, M. Speth, N. Katz, C. Koebnick, Br. J. Nutr. 98, 1170–1177 (2007)

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    S. Kumazawa, M. Taniguchi, Y. Suzuki, M. Shimura, M. Kwon, T. Nakayama, J. Agric. Food Chem. 50, 373–377 (2002)

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    L. Custodio, E. Fernandes, A.L. Escapa, A. Fajardo, R. Aligué, F. Alberício, N.R. Neng, J.M.F. Nogueira, A. Romano, J. Agric. Food Chem. 59, 7005–7012 (2011)

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    I. Turhan, Int. J. Food Prop. 17, 363–370 (2014)

    Article  CAS  Google Scholar 

  23. 23.

    S.H. Bates, R.B. Jones, C.J. Bailey, Br. J. Pharmacol. 130, 1944–1948 (2009)

    Article  Google Scholar 

  24. 24.

    C. Fagg, J. Stewart, J. Arid Environ. 27, 3–25 (1994)

    Article  Google Scholar 

  25. 25.

    M.J. Correa, M.V. Salinas, B. Carbas, C. Ferrero, C. Brites, M.C. Puppo, J. Food Sci. Technol. 54, 2104–2114 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    R.G. McGuire, HortScience 27, 1254–1255 (1992)

    Article  Google Scholar 

  27. 27.

    International Organization for Standardization—ISO 20483:2006—cereals and pulses—determination of the nitrogen content and calculation of the crude protein content—Kjeldahl method; ISO 24557:2009—pulses—Determination of moisture content—air-oven method

  28. 28.

    American Association of Cereal Chemists—AACC. Approved methods of analysis: method 08-01.01: ash-basic method; method 30-25.01: crude fat in wheat, corn, and soy flour, feeds, and mixed feeds; method 32-05.01: total dietary fiber; method 80-10.01: determination of glucose in sugar mixtures-glucose oxidase method. (11th ed.). St. Paul. (1999)

  29. 29.

    M. Boehringer, Methods of Enzymatic Food Analysis. (Boehringer Publications, Ingelheim am Rhein, 1992)

    Google Scholar 

  30. 30.

    L.E. Rodriguez-Saona, M.M. Giusti, R.E. Wrolstad, J. Food Sci. 6, 458–465 (1998)

    Article  Google Scholar 

  31. 31.

    D. Asami, Y.-J. Hong, D. Barrett, A. Mitchell, J. Agric. Food Chem. 51, 1237–1241 (2003)

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    K. Thaipong, U. Boonprakob, K. Crosby, L. Cisneros-Zevallos, D.H. Byrne, J. Food Compos. Anal. 19, 669–675 (2006)

    Article  CAS  Google Scholar 

  33. 33.

    I.F. Benzie, J.J. Strain, Anal. Biochem. 239, 70–76 (1996)

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    C. Serrano, O. Matos, B. Teixeira, C. Ramos, N. Neng, J. Nogueira, M.L. Nunes, A. Marques, J. Sci. Food Agric. 91, 1554–1560 (2011)

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    L. Iipumbu, Compositional analysis of locally cultivated carob (Ceratonia siliqua) cultivars and development of nutritional food products for a range of market sectors. (Doctoral thesis, Stellenbosch: Stellenbosch University). (2008)

  36. 36.

    P. Felker, J.C. Guevara, For. Ecol. Manag. 186, 271–286 (2003)

    Article  Google Scholar 

  37. 37.

    A.G. Galán, A.D. Corrêa, C.M.P. Abreu, M.F.P. Barcelos, Arch. Latinoam. Nutr. 58, 309–315 (2008)

    PubMed  Google Scholar 

  38. 38.

    Z.E. Sikorski, Chemical and Functional Properties of Food Components, 2nd edn. (CRC Press, ‎Boca Raton, 2002), pp. 110, 228, 240–241

    Google Scholar 

  39. 39.

    B. Biner, H. Gubbuk, M. Karham, M. Aksu, M. Pekmeczi, Food Chem. 100, 1453–1455 (2007)

    Article  CAS  Google Scholar 

  40. 40.

    I.J. Stavrou, A. Christou, C.P. Kapnissi-Christodoulou, Food Chem. 269, 355–374 (2018)

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    L. Perez-Olleros, M. Garcia-Cuevas, B. Ruiz-Roso, A. Requejo, Int. Sci. Food Agric. 79, 173–178 (1999)

    Article  CAS  Google Scholar 

  42. 42.

    B. Becker, O.K.K. Grosjean, J. Agric. Food Chem. 28, 22–25 (1980)

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    R. Mahtout, V.M. Ortiz-Martínez, M.J. Salar-García, I. Gracia, F.J. Hernández-Fernández, A. Pérez de los Ríos, F. Zaidia, S. Sanchez-Segado, L.J. Lozano-Blanco, Sustainability 10, 90 (2018)

    Article  CAS  Google Scholar 

  44. 44.

    I. Batlle, J. Tous, Carob tree Ceratonia siliqua L. Promoting the conservation and use of underutilized and neglected crops. 17. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, Rome 1997

  45. 45.

    A. Hernández-Mijares, C. Bañuls, J.E. Peris, N. Monzó, A. Jover, L. Bellod, V. Victor, M. Rocha, Food Chem. 141, 1267–1272 (2013)

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    C.M. Kerksick, C.D. Wilborn, W.I. Campbell, T.M. Harvey, B.M. Marcello, M.D. Roberts, A.G. Parker, A.G. Byars, L.D. Greenwood, A.L. Almada, R.B. Kreider, M.J. Greenwood, J. Strength Cond. Res. 23, 2673–2682 (2009)

    Article  PubMed  Google Scholar 

  47. 47.

    G. Picariello, L. Sciammaro, F. Siano, M.G. Volpe, M.C. Puppo, G. Mamone, Food Res. Int. 99, 730–738 (2017)

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    N. Petkova, I. Petrov, I. Ivanov, R. Mihov, R. Hadjikinova, M. Ognyanov, V. Nikolova, Int. J. Pharm. Sci. Rev. Res. 9, 2189–2195 (2017)

    CAS  Google Scholar 

  49. 49.

    P. Wursch, S. Del Vedove, J. Rosset, M. Smiley, Lebenson Wiss. Technol. 17, 351–354 (1984)

    Google Scholar 

  50. 50.

    A. Curtis, D. Race, Carob Agroforestry in the Low Rainfall Murray Valley: A Market and Economic Assessment. Publication No. 98/8. Rural Industry Research and Development Corporation (RIRDC), Australia (1998)

  51. 51.

    R. Apak, K. Guclu, B. Demirata, M. Ozyurek, S.E. Celik, K.I. Berker, D. Ozyurt, Molecules 12, 1246–1547 (2007)

    Article  Google Scholar 

Download references


The bilateral Co-operation between Argentine and Portugal, “Development of high protein formulations for bakery and confectionery”, supported by Ministerio de Ciencia, Tecnologia e Innovacion Productiva de la Republica Argentina (MINCyT) and Fundação para a Ciência e a Tecnologia (FCT) (Procº 441.00) from Portugal is acknowledged. The NMR spectrometers used are part of The National NMR Facility, supported by Fundação para a Ciência e a Tecnologia (RECI/BBB-BQB/0230/2012), and we thank Doctor Helena Matias for the technical assistance with the NMR equipment.

Author information



Corresponding author

Correspondence to C. Brites.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carbas, B., Salinas, M.V., Serrano, C. et al. Chemical composition and antioxidant activity of commercial flours from Ceratonia siliqua and Prosopis spp.. Food Measure 13, 305–311 (2019).

Download citation


  • Food quality
  • Phenolics
  • Chromatography analysis
  • Sugars
  • Antioxidants