Skip to main content

Advertisement

Log in

In vitro evaluation of antioxidant and anti-proliferative activities of Gypsophila sphaerocephala (Caryophyllaceae) extracts together with their phenolic profiles

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This study was designed to investigate the antioxidant and antiproliferative activities of water and methanol extracts of endemic plant Gypsophila sphaerocephala subsp cappadocica in conjuction with phenolic profiles. Individual phenolics of the extracts were identified and quantified by RP-HPLC analysis. Antioxidant potentials of the extracts were evaluated by DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS [2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)] radical scavenging capacity tests, cupric ion reducing antioxidant capacity (CUPRAC) method and Fe2+ chelating assay. Antiproliferative activities of the extracts were tested against MCF-7 (breast adenocarcinoma), HT-29 (colorectal adenocarcinoma) and HepG2 (hepatocellular carcinoma) cell lines. RP-HPLC analysis showed that methanol extract was richer than water extract in terms of phenolic content. In parallel to the phenolic contents, methanol extract showed higher antioxidant activity than water extract by DPPH, CUPRAC and Fe2+ chelating tests while water extract exhibited higher activity by ABTS method. Moreover, methanol extract displayed 1.8-fold, 4.3-fold and 2.6-fold more antiproliferative activity than water extract against MCF-7 cells, HepG2 cells and HT-29 cells, respectively. However, both extracts were found to show moderate antioxidant and antiproliferative activity compared to positive controls. These results suggest that Gypsophila sphaerocephala may be used as a promising source for food and nutraceutical industries due to its considerable antioxidant and antiproliferative potentials together with its rich phenolic content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. T.M. Rababah, K.I. Ereifej, R.B. Esoh, M.H. Al-u’datt, M.A. Alrababah, W. Yang, Antioxidant activities, total phenolics and HPLC analyses of the phenolic compounds of extracts from common Mediterranean plants. Nat. Prod. Res. 25, 596–605 (2011). https://doi.org/10.1080/14786419.2010.488232

    Article  CAS  PubMed  Google Scholar 

  2. M. Naczk, F. Shahidi, Extraction and analysis of phenolics in food. J. Chromatogr. A. 1054, 95–111 (2004). https://doi.org/10.1016/j.chroma.2004.08.059

    Article  CAS  PubMed  Google Scholar 

  3. V. Farzaneh, I.S. Carvalho, A review of the health benefit potentials of herbal plant infusions and their mechanism of actions. Ind. Crops Prod. 65, 247–258 (2015). https://doi.org/10.1016/j.indcrop.2014.10.057

    Article  Google Scholar 

  4. E. Köksal, H. Tohma, Ö Kılıç, Y. Alan, A. Aras, I. Gülçin, E. Bursal, Assessment of antimicrobial and antioxidant activities of nepeta trachonitica: analysis of its phenolic compounds using HPLC-MS/MS. Sci. Pharm. 85, 1–14 (2017). https://doi.org/10.3390/scipharm85020024

    Article  CAS  Google Scholar 

  5. Z. Can, N. Baltas, Bioactivity and enzyme inhibition properties of Stevia rebaudiana. Ingenta Connect 12, 188–194 (2016)

    CAS  Google Scholar 

  6. H.F. dos Santos, J.F. Campos, C.M. dos Santos, J.B.P. Balestieri, D.B. Silva, C.A. Carollo, K. de P. Souza, L.M. Estevinho, E.L. dos Santos, Chemical profile and antioxidant, anti-inflammatory, antimutagenic and antimicrobial activities of geopropolis from the stingless bee Melipona orbignyi, Int. J. Mol. Sci. (2017). https://doi.org/10.3390/ijms18050953

    Article  PubMed  PubMed Central  Google Scholar 

  7. D.H. Ngo, I. Wijesekara, T.S. Vo, Q. Van Ta, S.K. Kim, Marine food-derived functional ingredients as potential antioxidants in the food industry: an overview. Food Res. Int. 44, 523–529 (2011). https://doi.org/10.1016/j.foodres.2010.12.030

    Article  CAS  Google Scholar 

  8. M. Korkmaz, H. Özçelik, Economic importance of Gypsophila L., Ankyropetalum Fenzl and Saponaria L. (Caryophyllaceae) taxa of Turkey. Afr. J. Biotechnol. 10, 9533–9541 (2011)

    Article  CAS  Google Scholar 

  9. P.M.S. D, S. Antonic, In vitro determination of the spermicidal activity of plant saponins. PHARMAZIE. 40, 585 (1985)

    Google Scholar 

  10. V. Vitcheva, R. Simeonova, I. Krasteva, M. Yotova, S. Nikolov, M. Mitcheva, Hepatoprotective effects of saponarin, isolated from Gypsophila trichotoma Wend. on cocaine-induced oxidative stress in rats. Redox Rep. 16, 56–61 (2011). https://doi.org/10.1179/174329211X12989133691530

    Article  CAS  PubMed  Google Scholar 

  11. H. Bai, Y. Zhong, Y.Y. Xie, Y.S. Wang, L. Liu, L. Zhou, J. Wang, Y.L. Mu, C.X. Zuo, A major triterpenoid saponin from Gypsophila oldhamiana. Chem. Biodivers. 4, 955–960 (2007). https://doi.org/10.1002/cbdv.200790085

    Article  CAS  PubMed  Google Scholar 

  12. S. Yao, L. Ma, J. Luo, J. Wang, L. Kong, Triterpenoid saponins from the roots of Gypsophila paniculata. Chin. J. Nat. Med. 8, 28–33 (2010)

    Article  CAS  Google Scholar 

  13. M. Koyuncu, C.S. Kiliç, A. Güvenç, Doǧu Anadolu’da Çöven Elde Edilen Bitkiler ve Bunlarin Doǧadaki Potansiyeli. Turk. J. Bot. 32, 489–494 (2008)

    Google Scholar 

  14. A.N. Yücekutlu, I. Bildacı, Determination of plant saponins and some of Gypsophila species: a review of the literature. Hacettepe J. Biol. Chem. 36, 129–135 (2008)

    Google Scholar 

  15. V.L. Singleton, J.A. Rossi, Colorunetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158 (1965)

    CAS  Google Scholar 

  16. A. Altay, G.S. Celep, A.E. Yaprak, I. Baskose, F. Bozoglu, Glassworts as possible anticancer agents against human colorectal adenocarcinoma cells with their nutritive, antioxidant and phytochemical profiles. Chem. Biodivers. 14, e1600290. (2017). https://doi.org/10.1002/cbdv.201600290

    Article  CAS  Google Scholar 

  17. J. Zhishen, T. Mengcheng, W. Jianming, The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64, 555–559 (1999). https://doi.org/10.1016/S0308-8146(98)00102-2

    Article  CAS  Google Scholar 

  18. M.S. Blois, Antioxidant determinations by the use of a stable free radical. Nature. 181, 1199–1200 (1958)

    Article  CAS  Google Scholar 

  19. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231–1237 (1999)

    Article  CAS  Google Scholar 

  20. R. Apak, K. Güçlü, M. Özyürek, S.E. Çelik, Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim. Acta 160, 413–419 (2008). https://doi.org/10.1007/s00604-007-0777-0

    Article  CAS  Google Scholar 

  21. T.P.C. Dinis, V.M.C. Madeira, L.M. Almeida, Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 315, 161–169 (1994)

    Article  CAS  Google Scholar 

  22. M. Trendowski, G. Yu, V. Wong, C. Acquafondata, T. Christen, T.P. Fondy, The real deal: using cytochalasin B in sonodynamic therapy to preferentially damage leukemia cells. Anticancer Res. 34, 2195–2202 (2014). https://doi.org/10.1016/S1387-2656(05)11004-7

    Article  CAS  PubMed  Google Scholar 

  23. S. Hosseinzadeh, A. Jafarikukhdan, A. Hosseini, R. Armand, The application of medicinal plants in traditional and modern medicine: a review of Thymus vulgaris. Int. J. Clin. Med. 6, 635–642 (2015). https://doi.org/10.4236/ijcm.2015.69084

    Article  Google Scholar 

  24. S.Ö. Yazici, İ. Özmen, Effect of the crude saponin Extract from Gypsophila pilulifera Boiss. & Heldr. on protease from Bacillus subtilis ATCC 6633 and antioxidant properties of the extract, Iran. J. Sci. Technol. Trans. A Sci. (2017). https://doi.org/10.1007/s40995-017-0366-y

    Article  Google Scholar 

  25. I. Arslan, A. Çelik, Saponin rich fractions (SRPs) from Soapwort show antioxidant and hemolytic activity. APCBEE Procedia. 7, 103–108 (2013). https://doi.org/10.1016/j.apcbee.2013.08.019

    Article  CAS  Google Scholar 

  26. Z.F. Fu, Z.C. Tu, L. Zhang, H. Wang, Q.H. Wen, T. Huang, Antioxidant activities and polyphenols of sweet potato (Ipomoea batatas L.) leaves extracted with solvents of various polarities. Food Biosci. 15, 11–18 (2016). https://doi.org/10.1016/j.fbio.2016.04.004

    Article  CAS  Google Scholar 

  27. Q.D. Do, A.E. Angkawijaya, P.L. Tran-Nguyen, L.H. Huynh, F.E. Soetaredjo, S. Ismadji, Y.H. Ju, Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 22, 296–302 (2014). https://doi.org/10.1016/j.jfda.2013.11.001

    Article  CAS  PubMed  Google Scholar 

  28. I. Ammar, M. Ennouri, H. Attia, Phenolic content and antioxidant activity of cactus (Opuntia ficus-indica L.) flowers are modified according to the extraction method. Ind. Crops Prod. 64, 97–104 (2015). https://doi.org/10.1016/j.indcrop.2014.11.030

    Article  CAS  Google Scholar 

  29. N.K. Chima, L. Nahar, R.R.T. Majinda, S. Celik, S.D. Sarker, Assessment of free-radical scavenging activity of Gypsophila pilulifera: assay-guided isolation of verbascoside as the main active component. Braz. J. Pharmacogn. 24, 38–43 (2014). https://doi.org/10.1590/0102-695X20142413391

    Article  CAS  Google Scholar 

  30. G.R. Zhao, Z.J. Xiang, T.X. Ye, Y.J. Yuan, Z.X. Guo, Antioxidant activities of Salvia miltiorrhiza and Panax notoginseng. Food Chem. 99, 767–774 (2006). https://doi.org/10.1016/j.foodchem.2005.09.002

    Article  CAS  Google Scholar 

  31. A. Serteser, M. Kargıoğlu, V. Gök, Y. Bağci, M.M. Özcan, D. Arslan, Antioxidant properties of some plants growing wild in Turkey. Grasas Aceites 60, 147–154 (2009). https://doi.org/10.3989/gya.086208

    Article  CAS  Google Scholar 

  32. B. Tohidi, M. Rahimmalek, A. Arzani, Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chem. 220, 153–161 (2017). https://doi.org/10.1016/j.foodchem.2016.09.203

    Article  CAS  PubMed  Google Scholar 

  33. M.E. Embuscado, Spices and herbs: natural sources of antioxidants—a mini review. J. Funct. Foods. 18, 811–819 (2015). https://doi.org/10.1016/j.jff.2015.03.005

    Article  CAS  Google Scholar 

  34. S. Skrovankova, D. Sumczynski, J. Mlcek, T. Jurikova, J. Sochor, Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 16, 24673–24706 (2015). https://doi.org/10.3390/ijms161024673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. O. Tusevski, A. Kostovska, A. Iloska, L. Trajkovska, S.G. Simic, Phenolic production and antioxidant properties of some Macedonian medicinal plants. Cent. Eur. J. Biol. 9, 888–900 (2014). https://doi.org/10.2478/s11535-014-0322-1

    Article  CAS  Google Scholar 

  36. M. Işık, M. Korkmaz, E. Bursal, İ Gülçin, E. Köksal, H. Tohma, Determination of antioxidant properties of Gypsophila bitlisensis bark. Int. J. Pharmacol. 11, 366–371 (2015)

    Article  Google Scholar 

  37. F. Naghibi, M. Irani, A. Hassanpour, A. Pirani, M. Hamzeloo-Moghadam, Cytotoxic effects of selective species of Caryophyllaceae in Iran. Res. J. Pharmacogn. 1, 29–32 (2014)

    Google Scholar 

  38. S.M. Moustafa, B.M. Menshawi, G.M. Wassel, K. Mahmoud, M. Mounier, Screening of some plants in egypt for their cytotoxicity against four human cancer cell lines. Int. J. PharmTech Res. 6, 1074–1084 (2014)

    Google Scholar 

  39. L. Voutquenne-Nazabadioko, R. Gevrenova, N. Borie, D. Harakat, C. Sayagh, A. Weng, M. Thakur, M. Zaharieva, M. Henry, Triterpenoid saponins from the roots of Gypsophila trichotoma Wender. Phytochemistry. 90, 114–127 (2013). https://doi.org/10.1016/j.phytochem.2013.03.001

    Article  CAS  PubMed  Google Scholar 

  40. S.E. Holmes, C. Bachran, H. Fuchs, A. Weng, M.F. Melzig, S.U. Flavell, D.J. Flavell, Triterpenoid saponin augmention of saporin-based immunotoxin cytotoxicity for human leukaemia and lymphoma cells is partially immunospecific and target molecule dependent. Immunopharmacol. Immunotoxicol. 37, 42–55 (2015). https://doi.org/10.3109/08923973.2014.971964

    Article  CAS  PubMed  Google Scholar 

  41. Z. Kamal, F. Ullah, M. Ayaz, A. Sadiq, S. Ahmad, A. Zeb, A. Hussain, M. Imran, Anticholinesterase and antioxidant investigations of crude extracts, subsequent fractions, saponins and flavonoids of atriplex laciniata L.: potential effectiveness in Alzheimer’s and other neurological disorders. Biol. Res. 48, 21 (2015). https://doi.org/10.1186/s40659-015-0011-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. M. Ayaz, M. Junaid, F. Ullah, A. Sadiq, F. Subhan, M.A. Khan, W. Ahmad, G. Ali, M. Imran, S. Ahmad, Molecularly characterized solvent extracts and saponins from Polygonum hydropiper L. show high anti-angiogenic, anti-tumor, brine shrimp, and fibroblast NIH/3T3 cell line cytotoxicity. Front. Pharmacol. 7, 1–13 (2016). https://doi.org/10.3389/fphar.2016.00074

    Article  CAS  Google Scholar 

  43. J. Navarro, T. del Hierro, T. Herrera, G. Fornari, D. Martin, The gastrointestinal behavior of saponins and its significance for their bioavailability and bioactivities. J. Funct. Foods. 40, 484–497 (2018). https://doi.org/10.1016/j.jff.2017.11.032

    Article  CAS  Google Scholar 

  44. I. Podolak, A. Galanty, D. Sobolewska, Saponins as cytotoxic agents: a review. Phytochem. Rev. 9, 425–474 (2010). https://doi.org/10.1007/s11101-010-9183-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by grants form Erzincan University Scientific Research Projects Coordination Commission (EU-BAP) (Project No.: FBA-2017-470).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Altay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altay, A., Degirmenci, S., Korkmaz, M. et al. In vitro evaluation of antioxidant and anti-proliferative activities of Gypsophila sphaerocephala (Caryophyllaceae) extracts together with their phenolic profiles. Food Measure 12, 2936–2945 (2018). https://doi.org/10.1007/s11694-018-9909-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-018-9909-y

Keywords