Journal of Food Measurement and Characterization

, Volume 12, Issue 4, pp 2819–2834 | Cite as

Classification of chestnuts according to moisture levels using impact sound analysis and machine learning

  • Ferhat KurtulmuşEmail author
  • Sencer Öztüfekçi
  • İsmail Kavdır
Original Paper


In this study, a prototype system was designed, built and tested to classify chestnuts using impact sound signals and machine learning methods according to moisture contents. Briefly, the system consisted of a shotgun microphone, a sliding platform, an impact surface, a triggering system, a sound device and a computer. Sound signal data were acquired from 2028 chestnut samples with three different moisture levels. Acoustic signals from chestnut samples were filtered to alleviate negative effects of unwanted noise. Four machine learning classifiers using three different feature sets obtained from two feature groups applying feature reduction methods were trained and tested to classify pairs of chestnut moisture group categories as 35% versus 45%, 35% versus 55%, 45% versus 55% (classification with two outputs) and 35% versus 45% versus 55% (classification with three outputs), respectively. The highest classification success (88%) was achieved for the classification application category of 35 versus 55%.


Chestnut classification Moisture level Impact acoustics Machine learning 



This work was supported by TUBİTAK, Administration Unit of Scientific Projects (Project No. 114O783, 2016).


  1. 1.
    I.R. Donis-González, D.E. Guyer, G.A. Leiva-Valenzuela, J. Burns, Assessment of chestnut (Castanea spp.) slice quality using color images. J. Food Eng. 115(3), 407–414 (2013)CrossRefGoogle Scholar
  2. 2.
    A. Biju Cletus, J.K. Carson, Drying curves and apparent diffusivity of New Zealand chestnut variety 210152. J. Food Eng. 85, 381–386 (2008)CrossRefGoogle Scholar
  3. 3.
    T.C. Pearson, Detection of pistachio nuts with closed shells using impact acoustics. Appl. Eng. Agric. 17(2), 249–253 (2001)CrossRefGoogle Scholar
  4. 4.
    A.E. Çetin, T.C. Pearson, A.H. Tewfik, Classification of closed and open shell pistachio nuts using voice recognition technology. Trans. ASAE 47(2), 659–664 (2004)CrossRefGoogle Scholar
  5. 5.
    M.T. Amoodeh, M.H. Khoshtaghaza, S. Minaei, Acoustic on-line grain moisture meter. Comput. Electron. Agric. 52(1–2), 71–78 (2006)CrossRefGoogle Scholar
  6. 6.
    H. Kalkan, Y. Yardimci, Classification of hazelnuts by impact acoustics. 16th IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing, Arlington, VA, pp. 325–330 (2006)Google Scholar
  7. 7.
    H. Kalkan, N.F. Ince, A.H. Tewfik, Y. Yardimci, T. Pearson, Classification of hazelnut kernels by using impact acoustic time-frequency patterns. EURASIP J. Adv. Signal Process. 247643, 1–11 (2008)Google Scholar
  8. 8.
    I.E. Elbatawi, An acoustic impact method to detect hollow heart of potato tubers. Biosyst. Eng. 100(2), 206–213 (2008)CrossRefGoogle Scholar
  9. 9.
    M. Omid, A. Mahmoudi, M.H. Omid, An intelligent system for sorting pistachio nut varieties. Expert. Syst. Appl. 36(9), 11528–11535 (2009)CrossRefGoogle Scholar
  10. 10.
    J. Buerano, J. Zalameda, R.S. Ruiz, Microphone system optimization for free fall impact acoustic method in detection of rice kernel damage. Comput. Electron. Agric. 85, 140–148 (2012)CrossRefGoogle Scholar
  11. 11.
    S. Khalesi, A. Mahmoudi, A. Hosainpour, A. Alipour, Detection of walnut varieties using impact acoustics and artificial neural networks (ANNs). Mod. Appl. Sci. 6(1), 43–49 (2012)Google Scholar
  12. 12.
    A. Reshadsedghi, A. Mahmoudi, Detection of almond varieties using impact acoustics and artificial neural networks. Int. J. Agr. Crop Sci. 6(14), 1008–1017 (2013)Google Scholar
  13. 13.
    B. Kacar, A. İnal, Bitki Analizleri, 1st edn. (Nobel, Ankara, 2008), pp. 251–252Google Scholar
  14. 14.
    T.E. Oliphant, Python for scientific computing. Comput. Sci. Eng. 9(3), 10–20 (2007)CrossRefGoogle Scholar
  15. 15.
    F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: machine learning in Python. J Mach. Learn. Res. 12, 2825–2830 (2011)Google Scholar
  16. 16.
    Github. Deep neural networks without the learning cliff! Classifiers and regressors compatible with scikit-learn. (2017)
  17. 17.
    J. Bullock, Libxtract: a lightweight library for audio feature extraction, in Proceedings of the International Computer Music Conference (International Computer Music Association, Copenhagen, Denmark, 2007), pp. 25–28Google Scholar
  18. 18.
    I. Guyon, A. Elisseeff, An introduction to variable and feature selection. J Mach. Learn. Res. 3, 1157–1182 (2003)Google Scholar
  19. 19.
    Y. Saeys, I. Inza, P. Larranaga, A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)CrossRefGoogle Scholar
  20. 20.
    E.R. Dougherty, J. Hua, C. Sima, Performance of feature selection methods. Curr. Genom. 10(6), 365–374 (2009)CrossRefGoogle Scholar
  21. 21.
    Y. Bian, A Gram–Schmidt process based approach for improving DEA discrimination in the presence of large dimensionality of data set. Expert. Syst. Appl. 39(3), 3793–3799 (2012)CrossRefGoogle Scholar
  22. 22.
    Y. Lu, K. Boukharouba, J. Boonært, A. Fleury, S. Lecœuche, Application of an incremental SVM algorithm for on-line human recognition from video surveillance using texture and color features. Neurocomputing 126, 132–140 (2014)CrossRefGoogle Scholar
  23. 23.
    R.I. Jennrich, in Stepwise Discriminant Analysis—Statistical Methods for Digital Computers, ed. by A.A. By, Greenfield (Wiley, New York, 1977), pp. 76–96Google Scholar
  24. 24.
    A.C. Rencher, Methods of Multivariate Analysis, 2nd edn. (Wiley, New York, 2002), pp. 156–157Google Scholar
  25. 25.
    I. Guyon, J. Weston, S. Barnhill, V. Vapnik, Gene selection for cancer classification using support vector machines. Mach. Learn. 46(1–3), 389–422 (2002)CrossRefGoogle Scholar
  26. 26.
    M. Aghbashlo, H. Mobli, S. Rafiee, M. Madadlou, The use of artificial neural network to predict exergetic performance of spray drying process: a preliminary study. Comput. Electron. Agric. 88, 32–43 (2012)CrossRefGoogle Scholar
  27. 27.
    S. Kujawa, K. Nowakowski, R.J. Tomczak, J. Dach, P. Boniecki, J. Weres, W. Mueller, B. Raba, T. Piechota, P.C.R. Carmona, Neural image analysis for maturity classification of sewage sludge composted with maize straw. Comput. Electron. Agric. 109, 302–310 (2014)CrossRefGoogle Scholar
  28. 28.
    P. Boniecki, K. Koszela, H. Piekarska-Boniecka, J. Weres, M. Zaborowicz, S. Kujawa, B. Raba, Neural identification of selected apple pests. Comput. Electron. Agric. 110, 9–16 (2015)CrossRefGoogle Scholar
  29. 29.
  30. 30.
    J. Heaton, Introduction to Neural Networks for Java: Feedforward Backpropagation Neural Networks (Heaton Research, 2018).
  31. 31.
    K.L. Priddy, P.E. Keller, Artificial Neural Networks: An Introduction, 1st edn. (SPIE press, Bellingham, 2005), pp. 13–61CrossRefGoogle Scholar
  32. 32.
    V. Gupta, G. Singh, M. Mittal, S.K. Pahuja (2010). Fourier transform of untransformable signals using pattern recognition technique. Second International Conference on Advances in Computing, Control, and Telecommunication Technologies. Jakarta, Indonesia, pp. 6–9Google Scholar
  33. 33.
    Y. Guo, T. Hastie, R. Tibshirani, Regularized discriminant analysis and its application in microarrays. Biostatistics 1(1), 1–18 (2005)Google Scholar
  34. 34.
    J. Makhoul, F. Kubala, R. Schwartz, R. Weischedel (1999). Performance measures for information extraction, in Proceedings of DARPA Broadcast News Workshop, pp. 249–252Google Scholar
  35. 35.
    D.M.W. Powers, Evaluation: from precision, recall and F-measure to ROC, informedness, markedness & correlation. J. Mach. Learn. Tech. 2, 37–63 (2011)Google Scholar
  36. 36.
    J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)Google Scholar
  37. 37.
    R. Lu, Predicting firmness and sugar content os sweet cherries using near-infrared diffuse reflectance spectroscopy. Trans ASAE 44(5), 1265–1271 (2001)Google Scholar
  38. 38.
    M. Nagata, J.G. Tallada, T. Kobayashi, Y. Cui, Y. Gejima, Predicting maturity quality parameters of strawberries using hyperspectral imaging. ASABE paper number 043033 (2004)Google Scholar
  39. 39.
    R. Lu, D. Ariana, A near-infrared sensing technique for measuring internal quality of apple fruit. Appl. Eng. Agric. 18(5), 585–590 (2002)Google Scholar
  40. 40.
    Y. Sun, S.S. Chen, J.F. Ning, W.T. Han, P.R. Weckler, Prediction of moisture content in corn leaves based on hyperspectral imaging and chemometric analysis. Trans. ASABE 58(3), 531–537 (2015)Google Scholar
  41. 41.
    J. Qiao, N. Wang, M.O. Ngadi, S. Baljinder, Water content and weight estimation for potatoes using hyperspectral imaging. ASABE paper number 053126 (2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biosystems Engineering, Faculty of AgricultureUludag UniversityBursaTurkey
  2. 2.Department of Soil Science and Plant Nutrition, Faculty of AgricultureUludag UniversityBursaTurkey
  3. 3.Department of Agricultural Machinery and Technologies Engineering, Faculty of AgricultureÇanakkale Onsekiz Mart UniversityÇanakkaleTurkey

Personalised recommendations