Advertisement

Journal of Food Measurement and Characterization

, Volume 12, Issue 4, pp 2385–2393 | Cite as

Dairy products discrimination according to the milk type using an electrochemical multisensor device coupled with chemometric tools

  • Imam Tazi
  • Kuwat Triyana
  • Dwi Siswanta
  • Ana C. A. Veloso
  • António M. Peres
  • Luís G. Dias
Original Paper

Abstract

This study shows the potential application of a potentiometric electronic tongue coupled with a lab-made DataLogger device for the classification of dairy products according to the type of milk used in their production, i.e., natural, fermented and UHT milk. The electronic tongue device merged a commercial pH electrode and 15 lipid/polymeric membranes, which were obtained by a drop-by-drop technique. The potentiometric signal profiles gathered from the 16 sensors, during the analysis of the 11 dairy products (with ten replicate samples), together with principal component analysis showed that dairy samples could be naturally grouped according to the three types of milk evaluated. To further investigate and verify this capability, a linear discriminant analysis together with a simulated annealing variable selection algorithm was also applied to the electrochemical data, which were randomly split into two datasets, one used for model training and internal-validation using a repeated K-fold cross-validation procedure (with 64% of the data); and the other for external validation purposes (containing the remaining 36% of the data). The multivariate supervised strategy used allowed establishing a classification model, based on the potentiometric information of four sensor lipid membranes, which enabled achieving a successful discrimination rate of 100% for both internal- and external-validation processes. The demonstrated versatility of the built electronic tongue for discriminating dairy products according to the type of milk used in their production combined with its simplicity, low-cost and fast time analysis may envisage a possible future application in dairy industry.

Keywords

Dairy products Electronic tongue Principal component analysis Linear discriminant analysis Simulated annealing algorithm 

Notes

Acknowledgements

This study was funded in part by the Ministry of Research, Technology and Higher Education, the Republic of Indonesia, Project 001/SP2H/LT/DRPM/IV/2017. The authors also thank the Directorate General of Islamic Education and Instituto Politécnico de Bragança, Portugal, for their support throughout the completion of this work. This work was financially supported by Project POCI-01–0145-FEDER-006984 – Associate Laboratory LSRE-LCM, Project UID/BIO/04469/2013 – CEB and strategic project PEst-OE/AGR/UI0690/2014 – CIMO all funded by FEDER - Fundo Europeu de Desenvolvimento Regional through COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI) – and by national funds through FCT - Fundação para a Ciência e a Tecnologia, Portugal.

References

  1. 1.
    M. Bougrini, K. Tahri, Z. Haddi, N. El Bari, E. Llobet, N. Jaffrezic-Renault, B. Bouchikhi, Aging time and brand determination of pasteurized milk using a multisensor e-nose combined with a voltammetric e-tongue. Mater. Sci. Eng. C 45, 348–358 (2014)CrossRefGoogle Scholar
  2. 2.
    R. Mungkarndee, I. Techakriengkrai, G. Tumcharern, M. Sukwattanasinitt, Fluorescence sensor array for identification of commercial milk samples according to their thermal treatments. Food Chem. 197, 198–204 (2016)CrossRefGoogle Scholar
  3. 3.
    P. Ciosek, K. Brudzewski, W. Wróblewski, Milk classification by means of an electronic tongue and support vector machine neural network. Meas. Sci. Technol. 17, 1379–1384 (2006)CrossRefGoogle Scholar
  4. 4.
    B. Roza-Delgado, A. Garrido-Varo, A. Soldado, A.G. Arrojo, M.C. Valdés, F. Maroto, D. Pérez-Marín, Matching portable NIRS instruments for in situ monitoring indicators of milk composition. Food Cont. 76, 74–81 (2017)CrossRefGoogle Scholar
  5. 5.
    F. Winquist, S. Holmin, C. Krantz-Rülcker, P. Wide, I. Lundström, A hybrid electronic tongue. Anal. Chim. Acta 406, 147–157 (2000)CrossRefGoogle Scholar
  6. 6.
    F. Winquist, C. Krantz-Rülcker, P. Wided, I. Lundström, Monitoring of freshness of milk by an electronic tongue on the basis of voltammetry. Meas. Sci. Technol. 9, 1937–1946 (1998)CrossRefGoogle Scholar
  7. 7.
    Z. Wei, J. Wang, X. Zhang, Monitoring of quality and storage time of unsealed pasteurized milk by voltammetric electronic tongue. Electrochim. Acta 88, 231–239 (2013)CrossRefGoogle Scholar
  8. 8.
    F. Winquist, R. Bjorklund, C. Krantz-Rülcker, I. Lundström, K. Ó¦stergren, T. Skoglund, An electronic tongue in the dairy industry. Sens. Actuators B 111–112, 299–304 (2005)CrossRefGoogle Scholar
  9. 9.
    Y. Yu, H. Zhao, R. Yang, G. Dong, L. Li, J. Yang, T. Jin, W. Zhang, Y. Liu, Pure milk brands classification by means of a voltammetric electronic tongue and multivariate analysis. Int. J. Electrochem. Sci. 10, 4381–4392 (2015)Google Scholar
  10. 10.
    L. Li, Y. Yu, J. Yang, R. Yang, G. Dong, T. Jin, Voltammetric electronic tongue for the qualitative analysis of milk adulterated with urea combined with multi-way data analysis. Int. J. Electrochem. Sci. 10, 5970–5980 (2015)Google Scholar
  11. 11.
    Y. Yu, H. Zhao, G. Dong, R. Yang, L. Li, Y. Liu, H. Wu, W. Zhang, Discrimination of milk adulterated with urea using voltammetric electronic tongue coupled with PCA-LSSVM. Int. J. Electrochem. Sci. 10, 10119–10131 (2015)Google Scholar
  12. 12.
    M.Y.M. Sim, T.J. Shya, M.N. Ahmad, A.Y.M. Shakaff, A.R. Othman, M.S. Hitam, Monitoring of milk quality with disposable taste sensor. Sensors 3, 340–349 (2003)CrossRefGoogle Scholar
  13. 13.
    P. Ciosek, Z. Brzózka, W. Wróblewski, Electronic tongue for flow-through analysis of beverages. Sens. Actuators B 118, 454–460 (2006)CrossRefGoogle Scholar
  14. 14.
    P. Ciosek, W. Wróblewski, Performance of selective and partially selective sensors in the recognition of beverages. Talanta 71, 738–746 (2007)CrossRefGoogle Scholar
  15. 15.
    P. Ciosek, W. Wróblewski, Miniaturized electronic tongue with an integrated reference microelectrode for the recognition of milk samples. Talanta 76, 548–556 (2008)CrossRefGoogle Scholar
  16. 16.
    L.A. Dias, A.M. Peres, A.C.A. Veloso, F.S. Reis, M. Vilas-Boas, A.A.S.C. Machado, An electronic tongue taste evaluation: identification of goat milk adulteration with bovine milk. Sens. Actuators B 136, 209–217 (2009)CrossRefGoogle Scholar
  17. 17.
    M. Hruškar, N. Major, M. Krpan, I.P. Krbavčić, G. Šarić, K. Marković, N. Vahčić, Evaluation of milk and dairy products by electronic tongue. Mljekarstvo 59, 193–200 (2009)Google Scholar
  18. 18.
    M. Hruškar, N. Major, M. Krpan, Application of a potentiometric sensor array as a technique in sensory analysis. Talanta 81, 398–403 (2010)CrossRefGoogle Scholar
  19. 19.
    M. Hruškar, N. Major, M. Krpan, N. Vahčić, Simultaneous determination of fermented milk aroma compounds by a potentiometric sensor array. Talanta 82, 1292–1297 (2010)CrossRefGoogle Scholar
  20. 20.
    I. Tazi, A. Choiriyah, D. Siswanta, K. Triyana, Detection of taste change of bovine and goat milk in room ambient using electronic tongue. Indones. J. Chem. 17, 422–430 (2017)CrossRefGoogle Scholar
  21. 21.
    Í Marx, N. Rodrigues, L.G. Dias, A.C.A. Veloso, J.A. Pereira, D.A. Drunkler, A.M. Peres, Sensory classification of table olives using an electronic tongue: analysis of aqueous pastes and brines. Talanta 162, 98–106 (2017)CrossRefGoogle Scholar
  22. 22.
    Í.M.G. Marx, N. Rodrigues, L.G. Dias, A.C.A. Veloso, J.A. Pereira, D.A. Drunkler, A.M. Peres, Quantification of table olives’ acid, bitter and salty tastes using potentiometric electronic tongue fingerprints. LWT - Food Sci. Technol. 79, 394–401 (2017)CrossRefGoogle Scholar
  23. 23.
    S. Slim, N. Rodrigues, L.G. Dias, A.C.A. Veloso, J.A. Pereira, S. Oueslati, A.M. Peres, Application of an electronic tongue for Tunisian olive oils’ classification according to olive cultivar or physicochemical parameters. Eur. Food Res. Technol. 243, 1459–1470 (2017)CrossRefGoogle Scholar
  24. 24.
    A.C.A. Veloso, L.G. Dias, N. Rodrigues, J.A. Pereira, A.M. Peres, Sensory intensity assessment of olive oils using an electronic tongue. Talanta 146, 585–593 (2016)CrossRefGoogle Scholar
  25. 25.
    A.C.A. Veloso, L.M. Silva, N. Rodrigues, L.P.G. Rebello, L.G. Dias, J.A. Pereira, A.M. Peres, Perception of olive oils sensory defects using a potentiometric taste device. Talanta 176, 610–618 (2018)CrossRefGoogle Scholar
  26. 26.
    U. Harzalli, N. Rodrigues, A.C.A. Veloso, L.G. Dias, J.A. Pereira, S. Oueslati, A.M. Peres, A taste sensor device for unmasking admixing of rancid or winey-vinegary olive oil to extra virgin olive oil. Comp. Electron. Agric. 144, 222–231 (2018)CrossRefGoogle Scholar
  27. 27.
    E.L. Chuayana Jr., C.V. Ponce, C.MaR.B. Rivera, E.C. Cabrera, Antimicrobial activity of probiotics from milk products. Phil. J. Microbiol. Infect. Dis. 32, 71–74 (2003)Google Scholar
  28. 28.
    R. Talon, D. Walter, C. Viallon, J.L. Berdagué, Prediction of Streptococcus salivarius subsp. thermophilus and Lactobacillus delbrueckii subsp. bulgaricus populations in yoghurt by Curie point pyrolysis-mass spectrometry. J. Microbiol. Method 48, 271–279 (2002)CrossRefGoogle Scholar
  29. 29.
    D. Bertsimas, J. Tsitsiklis, Simulated annealing. Stat. Sci. 8, 10–15 (1993)CrossRefGoogle Scholar
  30. 30.
    J. Cadima, J.O. Cerdeira, M. Minhoto, Computational aspects of algorithms for variable selection in the context of principal components. Comp. Stat. Data Anal. 47, 225–236 (2004)CrossRefGoogle Scholar
  31. 31.
    S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science 220, 671–680 (1983)CrossRefGoogle Scholar
  32. 32.
    N. Rodrigues, L.G. Dias, A.C.A. Veloso, J.A. Pereira, A.M. Peres, Monitoring olive oils quality and oxidative resistance during storage using an electronic tongue. LWT Food Sci. Technol. 73, 683–692 (2016)CrossRefGoogle Scholar
  33. 33.
    J. Cadima, J.O. Cerdeira, P.D. Silva, M. Minhoto, The subselect R package, http://cran.rproject.org/web/packages/subselect/vignettes/subselect.pdf. Accessed 15 February 2016
  34. 34.
    W.N. Venables, B.D. Ripley, Modern Applied Statistics with S (Statistics and Computing), 4th edn. (Springer, New York, 2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics DepartmentUniversitas Gadjah MadaYogyakartaIndonesia
  2. 2.Physics DepartmentUniversitas Islam Negeri Maulana Malik Ibrahim MalangMalangIndonesia
  3. 3.Interdisciplinary Halal Research GroupUniversitas Gadjah MadaYogyakartaIndonesia
  4. 4.Chemistry DepartmentUniversitas Gadjah MadaYogyakartaIndonesia
  5. 5.Instituto Politécnico de Coimbra, ISEC, DEQBCoimbraPortugal
  6. 6.CEB - Centre of Biological Engineering, University of MinhoBragaPortugal
  7. 7.Centro de Investigação de Montanha (CIMO)ESA, Instituto Politécnico de BragançaBragançaPortugal
  8. 8.Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM)ESA, Instituto Politécnico de BragançaBragançaPortugal

Personalised recommendations