Journal of Food Measurement and Characterization

, Volume 12, Issue 4, pp 2339–2348 | Cite as

Effects of different drying methods on phenolic contents, antioxidant, and tyrosinase inhibitory activity of peach blossoms

  • Jiechao Liu
  • Zhonggao Jiao
  • Chunling Zhang
  • Wenbo Yang
  • Hui Liu
  • Zhenzhen Lv
Original Paper


Fresh peach blossoms of two varieties were dried by using different methods, which include shade drying, freeze drying, microwave drying and hot air drying (at 30, 60, 90, 120 °C). The effects of different drying methods on phenolic contents, antioxidant and tyrosinase inhibitory activity were evaluated. Among the seven drying treatments, microwave drying yielded the highest contents of total phenolics, flavonoids, anthocyanins, proanthocyanidins and individual phenolic compounds in dried peach blossoms, while hot air drying at 30 °C gave the lowest retention of total phenolics, flavonoids, anthocyanins. As compared with shade drying and freeze drying, hot air drying at 60, 90, 120 °C resulted in higher retention of phenolic content. The highest antioxidant activity in dried peach blossoms was obtained by microwave drying, while hot air drying at 30 °C gave the lowest. The effect of different drying methods on antioxidant activity of dried peach blossoms was consistent with that of phenolic content. The highest tyrosinase inhibitory activity was achieved by hot air drying at 120 °C for variety ‘yingchun’ and 90 °C for variety ‘huangjinmeili’, but there was no significant difference among hot air drying at 60, 90, 120 °C for both varieties. The tyrosinase inhibitory activities of peach blossoms by microwave drying and freeze drying were comparable and much lower than that of shade drying. The results indicated that microwave drying was a desirable method for the preservation of phenolic compounds and antioxidant activity in peach blossoms, while shade drying and hot air drying at high temperature were favorable for tyrosinase inhibitory activity.


Peach blossom Drying Phenolic Flavonoid Antioxidant activity Tyrosinase inhibitory activity 



This work was supported by Fundamental and Frontier Technology Research Project of Henan Province (142300410046) and the Agricultural Science and Technology Innovation Program (ASTIP) of Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2016-ZFRI).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal participants

The authors declare that this work does not contain any studies with human or animal subjects.


  1. 1.
    M. Faust, B.L. Timon, Hortic. Rev. 17, 331–379 (1995)Google Scholar
  2. 2.
    J.Z. Ma, Y.C. Zhang, X.D. Xu, Y.W. Zhang, H.H. Zhang, L.Q. Guo, Z.Y. Wang, J. Chin. Med. 28(7), 1020–1022 (2013)Google Scholar
  3. 3.
    C. Li, M.H. Wang, J. Korean Soc. Appl. Biol. Chem. 54, 46–53 (2011)Google Scholar
  4. 4.
    J.C. Liu, Q.L. Zhang, Z.G. Jiao, C.L. Zhang, Z.Z. Lv, H. Liu, S.X. Wang, J. Fruit Sci. 31, 836–841 (2014)Google Scholar
  5. 5.
    J.C. Liu, Z.G. Jiao, W.B. Yang, C.L. Zhang, H. Liu, Z.Z. Lv, Molecules 20, 20460–20472 (2015)CrossRefGoogle Scholar
  6. 6.
    M. Kamran, A.S. Hamlin, C.J. Scott, H.K. Obied, Ind. Crops Prod. 78, 29–38 (2015)CrossRefGoogle Scholar
  7. 7.
    F.J. Esparza-Martínez, R. Miranda-López, S.M. Mata-Sánchez, S.H. Guzman-Maldonado, Plant Foods Hum. Nutr. 71, 294–300 (2016)CrossRefGoogle Scholar
  8. 8.
    M. Baslar, S. Karasu, M. Kilicli, A.A. Us, O. Sagdic, Int. J. Food Eng. 10, 839–848 (2014)CrossRefGoogle Scholar
  9. 9.
    L. Mendez-Lagunas, J. Rodriguez-Ramirez, M. Cruz-Gracida, S. Sandoval-Torres, G. Barriada-Bernal, Food Chem. 230, 174–181 (2017)CrossRefGoogle Scholar
  10. 10.
    L.Y. Zhou, Z.Z. Cao, J.F. Bi, J.Y. Yi, Q.Q. Chen, X.Y. Wu, M. Zhou, Int. J. Food Sci. Technol. 51, 842–853 (2016)CrossRefGoogle Scholar
  11. 11.
    A. Vega-Galvez, K. Ah-Hen, M. Chacana, J. Vergara, J. Martinez-Monzo, P. Garcia-Segovia, R. Lemus-Mondaca, K. Di Scala, Food Chem. 132, 51–59 (2012)CrossRefGoogle Scholar
  12. 12.
    N.D. Mrad, N. Boudhrioua, N. Kechaou, F. Courtois, C. Bonazzi, Food Bioprod. Process. 90, 433–441 (2012)CrossRefGoogle Scholar
  13. 13.
    M.Y. Zheng, Q.L. Xia, S.M. Lu, LWT-Food Sci. Technol. 63, 14–20 (2015)CrossRefGoogle Scholar
  14. 14.
    G. Izli, Food Sci. Technol. 37, 139–147 (2017)CrossRefGoogle Scholar
  15. 15.
    E.W.C. Chan, Y.Y. Lim, S.K. Wong, K.K. Lim, S.P. Tan, F.S. Lianto, M.Y. Yong, Food Chem. 113, 166–172 (2009)CrossRefGoogle Scholar
  16. 16.
    D.S. Sogi, M. Siddiq, K.D. Dolan, LWT-Food Sci. Technol. 62, 564–568 (2015)CrossRefGoogle Scholar
  17. 17.
    V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventos, Methods Enzymol. 299, 152–178 (1999)CrossRefGoogle Scholar
  18. 18.
    L. Yang, Y.L. Cao, J.G. Jiang, Q.S. Lin, J. Chen, L. Zhu, J. Sep. Sci. 33, 1349–1355 (2010)PubMedGoogle Scholar
  19. 19.
    M.M. Giusti, R.E. Wrolstad, in Current Protocols in Food Analytical Chemistry, ed. by R.E. Wrolstad (Wiley, New York, 2001), pp. 1–13Google Scholar
  20. 20.
    R.B. Broadhurst, W.T. Jones, J. Sci. Food Agric. 29, 788–794 (1978)CrossRefGoogle Scholar
  21. 21.
    X.H. Kou, Q. Chen, X.H. Li, M.F. Li, C. Kan, B.R. Chen, Y. Zhang, Food Chem. 173, 1037–1044 (2015)CrossRefGoogle Scholar
  22. 22.
    R.B. Pegg, R. Amarowicz, M. Naczk, F. Shahidi, ACS Symp. Ser. 956, 140–158 (2007)CrossRefGoogle Scholar
  23. 23.
    P. Maisuthisakul, M.H. Gordon, Food Chem. 117, 332–341 (2009)CrossRefGoogle Scholar
  24. 24.
    C.K. Hsu, C.T. Chang, H.Y. Lu, Y.C. Chung, Food Chem. 105, 1099–1105 (2007)CrossRefGoogle Scholar
  25. 25.
    Q. Meng, H. Fan, Y. Li, L. Zhang, J. Food Meas. Charact. 12, 1–10 (2018)CrossRefGoogle Scholar
  26. 26.
    R.P.F. Guine, M.J. Barroca, F.J. Goncalves, M. Alves, S. Oliveira, M. Mendes, Food Chem. 168, 454–459 (2015)CrossRefGoogle Scholar
  27. 27.
    K.J. An, D.D. Zhao, Z.F. Wang, J.J. Wu, Y.J. Xu, G.S. Xiao, Food Chem. 197, 1292–1300 (2016)CrossRefGoogle Scholar
  28. 28.
    E. Aydin, D. Gocmen, LWT-Food Sci. Technol. 60, 385 – 392 (2015)CrossRefGoogle Scholar
  29. 29.
    F. Que, L. Mao, X. Fang, T. Wu, Int. J. Food Sci. Technol. 43, 1195–1201 (2008)CrossRefGoogle Scholar
  30. 30.
    C.H. Chang, H.Y. Lin, C.Y. Chang, Y.C. Liu, J. Food Eng. 77, 478–485 (2006)CrossRefGoogle Scholar
  31. 31.
    S. Roshanak, M. Rahimmalek, S.A.H. Goli, J. Food Sci. Technol. 53, 721–729 (2016)CrossRefGoogle Scholar
  32. 32.
    S. Dokhani, T.D. Durance, T. Cottrell, G. Mazza, J. Essent. Oil Bear. Plants 15, 885–894 (2012)CrossRefGoogle Scholar
  33. 33.
    J.C. Nunes, M.G. Lago, V.N. Castelo-Branco, F.R. Oliveira, A.G. Torres, D. Perrone, M. Monteiro, Food Chem. 197, 881–890 (2016)CrossRefGoogle Scholar
  34. 34.
    M.H. Ahmad-Qasem, J. Nijsse, J.V. García-Pérez, S. Khalloufi, Dry. Technol. 35, 1204–1213 (2017)CrossRefGoogle Scholar
  35. 35.
    ÖA. Gümüsay, A.A. Borazan, N. Ercal, O. Demirkol, Food Chem. 173, 156–162 (2015)CrossRefGoogle Scholar
  36. 36.
    L.J. Du, Q.H. Gao, X.L. Li, Y.J. Ma, F.Y. Xu, M. Wang, J. Agric. Food Chem. 61, 11840–11847 (2013)CrossRefGoogle Scholar
  37. 37.
    E. Korbel, A. Servent, C. Billaud, P. Brat, Dry. Technol. 31, 1675–1680 (2013)CrossRefGoogle Scholar
  38. 38.
    A. Prathapan, M. Lukhman, C. Arumughan, A. Sundaresan, K.G. Raghu, Int. J. Food Sci. Technol. 44, 1438–1444 (2009)CrossRefGoogle Scholar
  39. 39.
    J. Lopez, E. Uribe, A. Vega-Galvez, M. Miranda, J. Vergara, E. Gonzalez, K. Di Scala, Food Bioprocess Technol. 3, 772–777 (2010)CrossRefGoogle Scholar
  40. 40.
    F.J. Esparza-Martinez, R. Miranda-Lopez, S.H. Guzman-Maldonado, Ind. Crops Prod. 84, 1–6 (2016)CrossRefGoogle Scholar
  41. 41.
    M.L. Chen, D.J. Yang, S.C. Liu, Int. J. Food Sci. Technol. 46, 1179–1185 (2011)CrossRefGoogle Scholar
  42. 42.
    L. Valadez-Carmona, C.P. Plazola-Jacinto, M. Hernandez-Ortega, M.D. Hernandez-Navarro, F. Villarreal, H. Necoechea-Mondragon, A. Ortiz-Moreno, G. Ceballos-Reyes, Innov. Food Sci. Emerg. Technol. 41, 378–386 (2017)CrossRefGoogle Scholar
  43. 43.
    D. Donno, M.G. Mellano, E. Raimondo, A.K. Cerutti, Z. Prgomet, G.L. Beccaro, Eur. Food Res. Technol. 242, 1961–1974 (2016)CrossRefGoogle Scholar
  44. 44.
    N. Izli, G. Izli, O. Taskin, J. Food Meas. Charact. 11, 64–74 (2017)CrossRefGoogle Scholar
  45. 45.
    Y.S. Yu, T.Z. Jin, G.S. Xiao, J. Food Process. Preserv. 41, e13303 (2017)CrossRefGoogle Scholar
  46. 46.
    F.Z. Hamrouni-Sellami, I.B. Rahali, S. Rebey, F. Bourgou, B. Limam, Marzouk, Food Bioprocess Technol. 6, 806–817 (2013)CrossRefGoogle Scholar
  47. 47.
    M. Igual, E. García-Martínez, M.E. Martín-Esparza, N. Martínez-Navarrete, Food Res. Int. 47, 284–290 (2012)CrossRefGoogle Scholar
  48. 48.
    K. Papoutsis, P. Pristijono, J.B. Golding, C.E. Stathopoulos, M.C. Bowyer, C.J. Scarlett, Q.V. Vuong, J. Food Process. Preserv. 41, e13152 (2017)CrossRefGoogle Scholar
  49. 49.
    J. Dong, X.H. Ma, Z.R. Fu, Y. Guo, Ind. Crops Prod. 34, 1102–1110 (2011)CrossRefGoogle Scholar
  50. 50.
    L.M. Bal, S.N. Naik, S. Satya, A. Kar, J. Food Meas. Charact. 11, 1203–1209 (2017)CrossRefGoogle Scholar
  51. 51.
    F. Al-Juhaimi, M.M. Ozcan, N. Uslu, J. Food Meas. Charact. 11, 58–63 (2017)CrossRefGoogle Scholar
  52. 52.
    A. Orphanides, V. Goulas, V. Gekas, Czech J. Food Sci. 31, 509–513 (2013)CrossRefGoogle Scholar
  53. 53.
    M.J. Amiot, M. Tacchini, S. Aubert, W. Oleszek, J. Agric. Food Chem. 43, 1132–1137 (1995)CrossRefGoogle Scholar
  54. 54.
    M.A. Madrau, A. Piscopo, A.M. Sanguinetti, A. Del Caro, M. Poiana, F.V. Romeo, A. Piga, Eur. Food Res. Technol. 228, 441–448 (2009)CrossRefGoogle Scholar
  55. 55.
    O. Arslan, A. Temur, I. Tozlu, J. Agric. Food Chem. 46, 1239–1271 (1998)CrossRefGoogle Scholar
  56. 56.
    J. Raynal, M. Moutounet, J.M. Souquet, J. Agric. Food Chem. 37, 1046–1050 (1989)CrossRefGoogle Scholar
  57. 57.
    M. Henríquez, S. Almonacid, M. Lutz, R. Simpson, M. Valdenegro, CyTA-J. Food 11, 127–135 (2013)CrossRefGoogle Scholar
  58. 58.
    A. Vega-Galveza, K. Di Scala, K. Rodriguez, R. Lemus-Mondaca, M. Miranda, J. Lopez, M. Perez-Won, Food Chem. 117, 647–653 (2009)CrossRefGoogle Scholar
  59. 59.
    M.S. Akter, M. Ahmed, J.B. Eun, Int. J. Food Sci. Nutr. 61, 702–712 (2010)CrossRefGoogle Scholar
  60. 60.
    D. Huang, B. Ou, R.L. Prior, J. Agric. Food Chem. 53, 1841–1856 (2005)CrossRefGoogle Scholar
  61. 61.
    A.P.K. Joshi, H.P.V. Rupasinghe, S. Khanizadeh, J. Food Process. Preserv. 35, 453–457 (2011)CrossRefGoogle Scholar
  62. 62.
    S. Chamorro, I. Goñi, A. Viveros, D. Hervert-Hernandez, A. Brenes, Eur. Food Res. Technol. 234, 147–155 (2012)CrossRefGoogle Scholar
  63. 63.
    Y.L. Zhang, Y.X. Shen, Y.C. Zhu, Z.M. Xu, LWT-Food Sci. Technol. 63, 569–574 (2015)CrossRefGoogle Scholar
  64. 64.
    S. Parvez, M. Kang, H.S. Chung, H. Bae, Phytother. Res. 21, 805–816 (2007)CrossRefGoogle Scholar
  65. 65.
    H.S. Abdillahi, J.F. Finnie, J. Van Staden, J. Ethnopharmacol. 136, 496–503 (2011)CrossRefGoogle Scholar
  66. 66.
    A. Somman, N. Siwarungson, J. Food Meas. Charact. 9, 369–374 (2015)CrossRefGoogle Scholar
  67. 67.
    K. Kaewnarin, N. Suwannarach, J. Kumla, S. Lumyong, J. Funct. Foods 27, 352–364 (2016)CrossRefGoogle Scholar
  68. 68.
    A.M. Muddathir, K. Yamauchi, I. Batubara, E.A.M. Mohieldin, T. Mitsunaga, S. Afr. J. Bot. 109, 9–15 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Zhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina

Personalised recommendations