Skip to main content
Log in

Effects of two different drying methods (freeze-drying and hot air-drying) on the phenolic and carotenoid profile of ‘Ataulfo’ mango by-products

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The agro-industrial processing of mango generates high amounts of by-products, like peels and paste, that are commonly discarded. These are potential sources of bioactive ingredients, such as phenolic compounds and carotenoids, that can be used to supplement other edible products to increase their nutritional value. In order to be successful in this regard, the processing methods used must avoid losses of the compounds of interest. The objective of this study was to identify the effects of freeze-drying (frozen 24 h at − 80 °C, freeze dried 48 h at − 50 °C, 4.00 Pa) and hot air-drying (convective hot air at 60 °C) on the profile and concentration of phenolic compounds and carotenoids, using sensitive chromatographic analyses. Our data showed that the total phenolic concentration, and that of the most abundant compounds (mangiferin and valoneic acid dilactone), were unaffected by drying method. Conversely, freeze-dried paste had greater carotenoid concentration than peel, while hot air-dried peel had greater carotenoid concentration than paste (main carotenoids: all-trans-β-carotene, 9-cis-β-carotene, all-trans-lutein, and 13-cis-β-cryptoxanthin). We concluded that carotenoids from mango peel and paste were more sensitive to drying method than phenolic compounds, and the effects on each by-product were in function of the food matrix and method used. By choosing the most adequate drying method, mango by-products can be sources of bioactive compounds to produce functional foods or beverages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Palafox-Carlos, E.M. Yahia, G.A. Gonzalez-Aguilar, Food Chem. 135(1), 105–111 (2012)

    Article  CAS  Google Scholar 

  2. H. Palafox-Carlos, J. Gil-Chavez, R.R. Sotelo-Mundo, J. Namiesnik, S. Gorinstein, G.A. Gonzalez-Aguilar, Molecules 17(11), 12657–12664 (2012)

    Article  CAS  PubMed  Google Scholar 

  3. S.G. Sayago-Ayerdi, C.L. Moreno-Hernandez, E. Montalvo-Gonzalez, M.L. Garcia-Magana, M.M.M. de Oca, J.L. Torres, J. Perez-Jimenez, Food Res. Int. 51(1), 188–194 (2013)

    Article  CAS  Google Scholar 

  4. M.D. Garcia-Magana, H.S. Garcia, L.A. Bello-Perez, S.G. Sayago-Ayerdi, M.M.M. de Oca, Plant Food Hum. Nutr. 68(3), 254–258 (2013)

    Article  CAS  Google Scholar 

  5. A.M. Abbasi, F.Y. Liu, X.B. Guo, X. Fu, T. Li, R.H. Liu, Int. J. Food Sci. Technol. 52(3), 817–826 (2017)

    Article  CAS  Google Scholar 

  6. E. Dorta, M.G. Lobo, M. Gonzalez, LWT-Food Sci. Technol. 45(2), 261–268 (2012)

    Article  CAS  Google Scholar 

  7. C. Henriquez, A. Cordova, S. Almonacid, J. Saavedra, J. Food Eng. 143, 146–153 (2014)

    Article  CAS  Google Scholar 

  8. M.L. Chen, D.J. Yang, S.C. Liu, Int. J. Food Sci. Technol. 46(6), 1179–1185 (2011)

    Article  CAS  Google Scholar 

  9. P.P. Lewicki, Trends Food Sci. Technol. 17(4), 153–163 (2006)

    Article  CAS  Google Scholar 

  10. P. Chantaro, S. Devahastin, N. Chiewchan, LWT-Food Sci. Technol. 41(10), 1987–1994 (2008)

    Article  CAS  Google Scholar 

  11. A. Ciurzyńska, A. Lenart, Pol. J. Food Nutr. Sci. 61(3), 165–171 (2011)

    Google Scholar 

  12. X. Duan, X.T. Yang, G.Y. Ren, Y.Q. Pang, L.L. Liu, Y.H. Liu, Dry Technol. 34(11), 1271–1285 (2016)

    Article  Google Scholar 

  13. C. Ratti, J. Food Eng. 49(4), 311–319 (2001)

    Article  Google Scholar 

  14. E. Dorta, M. Gonzalez, M.G. Lobo, C. Sanchez-Moreno, B. de Ancos, Food Res. Int. 57, 51–60 (2014)

    Article  CAS  Google Scholar 

  15. E. Dorta, M.G. Lobo, M. Gonzalez, Plant Food Hum. Nutr. 68(2), 190–199 (2013)

    Article  CAS  Google Scholar 

  16. E. Dorta, M.G. Lobo, M. Gonzalez, Food Bioprocess. Technol. 6(4), 1067–1081 (2013)

    Article  CAS  Google Scholar 

  17. L. Carmona, L. Zacarias, M.J. Rodrigo, Postharvest Biol. Technol. 74, 108–117 (2012)

    Article  CAS  Google Scholar 

  18. A.J. Melendez-Martinez, C.M. Stinco, C. Liu, X.D. Wang, Food Chem. 138(2–3), 1341–1350 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. M.J. Rodrigo, J.F. Marcos, F. Alférez, M.D. Mallent, L. Zacarías, J. Exp. Bot. 54(383), 727–738 (2003)

    Article  CAS  PubMed  Google Scholar 

  20. J.C. Barreto, M.T.S. Trevisan, W.E. Hull, G. Erben, E.S. de Brito, B. Pfundstein, G. Wurtele, B. Spiegelhalder, R.W. Owen, J. Agric. Food Chem. 56(14), 5599–5610 (2008)

    Article  CAS  PubMed  Google Scholar 

  21. A.M. Gomez-Caravaca, A. Lopez-Cobo, V. Verardo, A. Segura-Carretero, A. Fernandez-Gutierrez, Electrophoresis 37(7–8), 1072–1084 (2016)

    Article  CAS  PubMed  Google Scholar 

  22. A. Schieber, N. Berardini, R. Carle, J. Agric. Food Chem. 51(17), 5006–5011 (2003)

    Article  CAS  PubMed  Google Scholar 

  23. C.M. Ajila, L.J. Rao, U.J.S.P. Rao, Food Chem. Toxicol. 48(12), 3406–3411 (2010)

    Article  CAS  PubMed  Google Scholar 

  24. N. Berardini, R. Carle, A. Schieber, Rapid Commun. Mass Spectrom. 18(19), 2208–2216 (2004)

    Article  CAS  PubMed  Google Scholar 

  25. T. Beelders, D. de Beer, E. Joubert, J. Agric. Food Chem. 63(22), 5518–5527 (2015)

    Article  CAS  PubMed  Google Scholar 

  26. H. Ichiki, O. Takeda, I. Sakakibara, S. Terabayashi, S. Takeda, H. Sasaki, J. Nat. Med. 61(2), 146–153 (2007)

    Article  CAS  Google Scholar 

  27. B.G. Oliveira, H.B. Costa, J.A. Ventura, T.P. Kondratyuk, M.E.S. Barroso, R.M. Correia, E.F. Pimentel, F.E. Pinto, D.C. Endringer, W. Romao, Food Chem. 204, 37–45 (2016)

    Article  CAS  PubMed  Google Scholar 

  28. K.J. Meyers, T.J. Swiecki, A.E. Mitchell, J. Agric. Food Chem. 54(20), 7686–7691 (2006)

    Article  CAS  PubMed  Google Scholar 

  29. R. Garcia-Villalba, J.C. Espin, K. Aaby, C. Alasalvar, M. Heinonen, G. Jacobs, S. Voorspoels, T. Koivumaki, P.A. Kroon, E. Pelvan, S. Saha, F.A. Tomas-Barberan, J. Agric. Food Chem. 63(29), 6555–6566 (2015)

    Article  CAS  PubMed  Google Scholar 

  30. J. Perez-Jimenez, J.L. Torres, J. Agric. Food Chem. 59(24), 12713–12724 (2011)

    Article  CAS  PubMed  Google Scholar 

  31. A. López-Cobo, V. Verardo, E. Diaz-de-Cerio, A. Segura-Carretero, A. Fernández-Gutiérrez, A.M. Gómez-Caravaca, Food Res. Int. (2017)

  32. D.S. Sogi, M. Siddiq, I. Greiby, K.D. Dolan, Food Chem. 141(3), 2649–2655 (2013)

    Article  CAS  PubMed  Google Scholar 

  33. D.S. Sogi, M. Siddiq, K.D. Dolan, LWT-Food Sci. Technol. 62(1), 564–568 (2015)

    Article  CAS  Google Scholar 

  34. Y.J. Sun, Y. Shen, D.H. Liu, X.Q. Ye, LWT-Food Sci. Technol. 60(2), 1269–1275 (2015)

    Article  CAS  Google Scholar 

  35. T. Vashisth, R.K. Singh, R.B. Pegg, LWT-Food Sci. Technol. 44(7), 1649–1657 (2011)

    Article  CAS  Google Scholar 

  36. J.D. Ornelas-Paz, E.M. Yahia, A.A. Gardea, Postharvest Biol. Technol. 50(2–3), 145–152 (2008)

    Article  CAS  Google Scholar 

  37. A.L. Vasquez-Caicedo, P. Sruamsiri, R. Carle, S. Neidhart, J. Agric. Food Chem. 53(12), 4827–4835 (2005)

    Article  CAS  PubMed  Google Scholar 

  38. X.W. Sui, P.D. Kiser, T. Che, P.R. Carey, M. Golczak, W.X. Shi, J. von Lintig, K. Palczewski, J. Biol. Chem. 289(18), 12286–12299 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. J. von Lintig, Annu. Rev. Nutr. 30, 35–56 (2010)

    Article  CAS  Google Scholar 

  40. C. Hernandez-Brenes, P.A. Ramos-Parra, D.A. Jacobo-Velazquez, R. Villarreal-Lara, R.I. Diaz-De la Garza, Tropical and Subtropical Fruits: Flavors, Color, and Health Benefits, In: G.K.J.B.S. Patil, C.O. Roa, K. Mahattanatawee, Editors. (ACS, Washington, D.C., 2013) pp. 29–42

  41. J. Mares, Annu. Rev. Nutr. 36, 571–602 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. X. Hou, J. Rivers, P. Leon, R.P. McQuinn, B.J. Pogson, Trends Plant Sci. 21(9), 792–803 (2016)

    Article  CAS  PubMed  Google Scholar 

  43. Y. Sharoni, K. Linnewiel-Hermoni, M. Khanin, H. Salman, A. Veprik, M. Danilenko, J. Levy, Mol. Nutr. Food Res. 56(2), 259–269 (2012)

    Article  CAS  PubMed  Google Scholar 

  44. D. Albanese, G. Adiletta, M. D’Acunto, L. Cinquanta, M. Di Matteo, Int. J. Food Sci. Technol. 49(11), 2458–2463 (2014)

    Article  CAS  Google Scholar 

  45. E. Ryckebosch, K. Muylaert, M. Eeckhout, T. Ruyssen, I. Foubert, J. Agric. Food Chem. 59(20), 11063–11069 (2011)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by Consejo Nacional de Ciencia y Tecnología (CONACYT), through project number 563: “Un Enfoque Multidisciplinario de la Farmacocinética de Polifenoles de Mango Ataulfo: Interacciones Moleculares, Estudios Preclínicos y Clínicos”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo A. González-Aguilar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Ancos, B., Sánchez-Moreno, C., Zacarías, L. et al. Effects of two different drying methods (freeze-drying and hot air-drying) on the phenolic and carotenoid profile of ‘Ataulfo’ mango by-products. Food Measure 12, 2145–2157 (2018). https://doi.org/10.1007/s11694-018-9830-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-018-9830-4

Keywords

Navigation