Advertisement

Journal of Food Measurement and Characterization

, Volume 12, Issue 3, pp 1763–1771 | Cite as

Effect of storage on quality attributes of lactic-acid-fermented mulberry juice subjected to combined pulsed light and ultrasonic pasteurization treatment

  • Emmanuel Kwaw
  • William Tchabo
  • Yongkun Ma
  • Maurice Tibiru Apaliya
  • Augustina Sackle Sackey
  • Benjamin Kumah Mintah
  • Muhammad Farooq
  • Shengmei Ma
Original Paper
  • 88 Downloads

Abstract

Quality attributes of long-term stored fruit juice are susceptible to change. Therefore, it is of paramount importance to assess the rate of change in the quality parameters of processed fruit juices during storage. The objective of this study was to assess the effect of storage on brix, pH, chromatic parameters, phenolic, antioxidant activities as well as microbial shelflife of lactic-acid-fermented mulberry juice subjected to combine pulsed light and ultrasonic treatment. The non-thermal treated fermented mulberry juice was kept in a plastic bottle and store at 5 and 25 °C. The changes in the quality parameters were assessed for a period of 210 days. The results revealed that, obrix, phenolic concentrations, antioxidant activities and chromatic parameters decreased during the storage period. The variations in these parameters were relatively less pronounced at 5 °C but were considerable at 25 °C. The juices were considered microbiologically unacceptable after 120 and 180 days storage at 25 and 5 °C respectively based of the European Union legislation (EC) No 2073/2005. Therefore, the best temperature for long-term storage of pulsed light-ultrasonic treated lactic-acid-fermented juice was 5 °C with microbial shelflife of 180 days.

Keywords

Mulberry juice Shelflife Polyphenol Antioxidant activity Non-thermal pasteurization Chromatic parameter 

References

  1. 1.
    X.-Q. Hu, L. Jiang, J.-G. Zhang, W. Deng, H.-L. Wang, Z.-J. Wei, Ind. Crops Prod. 49, 782–784 (2013).  https://doi.org/10.1016/j.indcrop.2013.06.030 CrossRefGoogle Scholar
  2. 2.
    D. Donno, M.G. Mellano, Ž Prgomet, A.K. Cerutti, G.L. Beccaro, JFNR 56, 18–31 (2017)Google Scholar
  3. 3.
    J.M. Landete, J.A. Curiel, H. Rodríguez, B. de las Rivas, R. Muñoz, J. Funct. Foods 7, 322–329 (2014).  https://doi.org/10.1016/j.jff.2014.01.028 CrossRefGoogle Scholar
  4. 4.
    M.M. Natić, D. Dabić, A. Papetti, M.M.F. Akšić, V. Ognjanov, M. Ljubojević, et al., Food Chem. 171, 128–136 (2015).  https://doi.org/10.1016/j.foodchem.2014.08.101 CrossRefGoogle Scholar
  5. 5.
    E. Kwaw, Y. Ma, W. Tchabo, M.T. Apaliya, L. Xiao, X. Li et al., Food Meas. 11, 1462–1473 (2017).  https://doi.org/10.1007/s11694-017-9525-2 CrossRefGoogle Scholar
  6. 6.
    W. Tchabo, Y. Ma, E. Kwaw, H. Zhang, X. Li, J. Inst. Brew. 123, 151–158 (2017).  https://doi.org/10.1002/jib.401 CrossRefGoogle Scholar
  7. 7.
    M. Arfan, R. Khan, A. Rybarczyk, R. Amarowicz, Int. J. Mol. Sci. 13, 2472–2480 (2012).  https://doi.org/10.3390/ijms13022472 CrossRefGoogle Scholar
  8. 8.
    M. Pérez-Gregorio, J. Regueiro, E. Alonso-González, L. Pastrana-Castro, J. Simal-Gándara, LWT-Food Sci and Technol. 44, 1793–1801 (2011).  https://doi.org/10.1016/j.lwt.2011.03.007 CrossRefGoogle Scholar
  9. 9.
    R. Jan, D. Saxena, S. Singh, Food Meas. (2017).  https://doi.org/10.1007/s11694-017-9484-7 Google Scholar
  10. 10.
    T. Tarko, A. Duda-Chodak, Ł Wajda, P. Satora, P. Sroka, D. Semik-Szczurak, JFNR 56, 61–72 (2017)Google Scholar
  11. 11.
    O.J. Caleb, U.L. Opara, P.V. Mahajan, M. Manley, L. Mokwena, A.G. Tredoux, Postharvest Biol. Technol. 79, 54–61 (2013).  https://doi.org/10.1016/j.postharvbio.2013.01.006 CrossRefGoogle Scholar
  12. 12.
    R.M. Syamaladevi, P.K. Andrews, N.M. Davies, T. Walters, S.S. Sablani, J. Sci. Food Agric. 92, 916–924 (2012).  https://doi.org/10.1002/jsfa.4670 CrossRefGoogle Scholar
  13. 13.
    S. Wibowo, T. Grauwet, B.T. Kebede, M. Hendrickx, A. Van Loey, Food Res. Int. 75, 295–304 (2015).  https://doi.org/10.1016/j.foodres.2015.06.020 CrossRefGoogle Scholar
  14. 14.
    R. Haq, K. Prasad, Food Meas. 11, 1542–1549 (2017).  https://doi.org/10.1007/s11694-017-9533-2 CrossRefGoogle Scholar
  15. 15.
    R. Bazaz, W.N. Baba, F.A. Masoodi, S. Yaqoob, Food Meas. (2017).  https://doi.org/10.1007/s11694-017-9679-y Google Scholar
  16. 16.
    I. Palgan, I. Caminiti, A. Muñoz, F. Noci, P. Whyte, D. Morgan et al., Food Microbiol. 28, 14–20 (2011).  https://doi.org/10.1016/j.fm.2010.07.023 CrossRefGoogle Scholar
  17. 17.
    F.N. Engmann, Y. Ma, W. Tchabo, H. Ma, J. Food Process Preserv. 39, 854–862 (2015).  https://doi.org/10.1111/jfpp.12296 CrossRefGoogle Scholar
  18. 18.
    S. S. Nielsen (ed.), Food Analysis Laboratory Manual, 2nd edn. (Springer, New York, 2010)Google Scholar
  19. 19.
    E. Kwaw, Y. Ma, W. Tchabo, M.T. Apaliya, L. Xiao, M. Wu, JFNR 56, 305–317 (2017).Google Scholar
  20. 20.
    W. Tchabo, Y. Ma, E. Kwaw, H. Zhang, X. Li, N.A. Afoakwah, Food Bioprocess Technol. 10, 1210–1223 (2017).  https://doi.org/10.1007/s11947-017-1892-5 CrossRefGoogle Scholar
  21. 21.
    M. Fazaeli, G. Hojjatpanah, Z. Emam-Djomeh, JFST 50, 35–43 (2013).  https://doi.org/10.1007/s13197-011-0246-y Google Scholar
  22. 22.
    L.D. Daza, A. Fujita, C.S. Fávaro-Trindade, J.N. Rodrigues-Ract, D. Granato, M.I. Genovese, Food Bioprod. Process. 97, 20–29 (2016).  https://doi.org/10.1016/j.fbp.2015.10.001 CrossRefGoogle Scholar
  23. 23.
    F. Barba, H. Jäger, N. Meneses, M. Esteve, A. Frígola, D. Knorr, Innov. Food Sci. Emerg. Technol. 14, 18–24 (2012).  https://doi.org/10.1016/j.ifset.2011.12.004 CrossRefGoogle Scholar
  24. 24.
    Z. Mousavi, S. Mousavi, S. Razavi, Z. Emam-Djomeh, H. Kiani, World J. Microbiol. Biotechnol. 27, 123–128 (2011)CrossRefGoogle Scholar
  25. 25.
    V.M. Sheehan, P. Ross, G.F. Fitzgerald, Innov. Food Sci. Emerg. Technol. 8, 279–284 (2007).  https://doi.org/10.1016/j.ifset.2007.01.007 CrossRefGoogle Scholar
  26. 26.
    ÇU. Pala, A.K. Toklucu, LWT-Food Sci. Technol. 50, 426–431 (2013).  https://doi.org/10.1016/j.lwt.2012.09.001 CrossRefGoogle Scholar
  27. 27.
    EC, Commision regulation (EC) No 2073/2005 of 15 November 2005 on the microbiological criteria of foodstuffs, Official Journal of the European Union (2005)Google Scholar
  28. 28.
    S. Min, Z. Jin, S. Min, H. Yeom, Q. Zhang, J. Food Sci. 68, 1265–1271 (2003).  https://doi.org/10.1111/j.1365-2621.2003.tb09637.x CrossRefGoogle Scholar
  29. 29.
    F. Koyuncu, Chem. Nat. Compd. 40, 367–369 (2004).  https://doi.org/10.1023/B:CONC.0000048249.44206.e2 CrossRefGoogle Scholar
  30. 30.
    S. Basu, C. Bose, N. Ojha, N. Das, J. Das, M. Pal et al., Bioinformation 11, 182–184 (2015).  https://doi.org/10.6026/97320630011182 CrossRefGoogle Scholar
  31. 31.
    S. Vegara, N. Martí, P. Mena, D. Saura, M. Valero, LWT-Food Sci. Technol. 54, 592–596 (2013).  https://doi.org/10.1016/j.lwt.2013.06.022 CrossRefGoogle Scholar
  32. 32.
    H. Alighourchi, M. Barzegar, J. Food Eng. 90, 179–185 (2009).  https://doi.org/10.1016/j.jfoodeng.2008.06.019 CrossRefGoogle Scholar
  33. 33.
    S.M. Gomes, M.-E. Ghica, I.A. Rodrigues, E. de Souza Gil, A.M. Oliveira-Brett, Talanta 154, 284–291 (2016).  https://doi.org/10.1016/j.talanta.2016.03.083 CrossRefGoogle Scholar
  34. 34.
    A.S. Arribas, M. Martínez-Fernández, M. Chicharro, TrAc Trends Anal. Chem. 34, 78–96 (2012).  https://doi.org/10.1016/j.trac.2011.10.015 CrossRefGoogle Scholar
  35. 35.
    A. Patras, N.P. Brunton, C. O’Donnell, B. Tiwari, Trends Food Sci. Technol. 21, 3–11 (2010).  https://doi.org/10.1016/j.tifs.2009.07.004 CrossRefGoogle Scholar
  36. 36.
    M. Ochoa, A. Kesseler, M. Vullioud, J. Lozano, LWT-Food Sci. Technol. 32, 149–153 (1999).  https://doi.org/10.1006/fstl.1998.0518 CrossRefGoogle Scholar
  37. 37.
    A. Oliveira, M. Coelho, E.M. Alexandre, M. Pintado, Food Meas. 11, 1804–1809 (2017).  https://doi.org/10.1007/s11694-017-9562-x CrossRefGoogle Scholar
  38. 38.
    P. Bierzunska, D. Cais-Sokolinska, M. Rudzinska, A. Gramza-MichaŁowska, JFNR 56, 101–108 (2017)Google Scholar
  39. 39.
    C. Brownmiller, L. Howard, R. Prior, J. Food Sci. 73, (2008).  https://doi.org/10.1111/j.1750-3841.2008.00761.x
  40. 40.
    P.J. Tsai, H.P. Huang, T.C. Huang, J. Food Qual. 27, 497–505 (2004).  https://doi.org/10.1111/j.1745-4557.2004.00645.x CrossRefGoogle Scholar
  41. 41.
    J. Hellström, P. Mattila, R. Karjalainen, J. Food Compos. Anal. 31, 12–19 (2013).  https://doi.org/10.1016/j.jfca.2013.02.010 CrossRefGoogle Scholar
  42. 42.
    T. Koutchma, Food Bioprocess Technol. 2, 138–155 (2009).  https://doi.org/10.1007/s11947-008-0178-3 CrossRefGoogle Scholar
  43. 43.
    V. López-Rubira, A. Conesa, A. Allende, F. Artés, Postharvest Biol. Technol. 37, 174–185 (2005).  https://doi.org/10.1016/j.postharvbio.2005.04.003 CrossRefGoogle Scholar
  44. 44.
    L. Wang, X. Sun, F. Li, D. Yu, X. Liu, W. Huang et al., J. Funct. Foods 18, 254–265 (2015).  https://doi.org/10.1016/j.jff.2015.07.013 CrossRefGoogle Scholar
  45. 45.
    W. Tchabo, Y. Ma, E. Kwaw, H. Zhang, L. Xiao, M.T. Apaliya, Food Chem. 239, 470–477 (2018).  https://doi.org/10.1016/j.foodchem.2017.06.140 CrossRefGoogle Scholar
  46. 46.
    Z. Cserhalmi, A. Sass-Kiss, M. Tóth-Markus, N. Lechner, Innov. Food Sci. Emerg. Technol. 7, 49–54 (2006).  https://doi.org/10.1016/j.ifset.2005.07.001 CrossRefGoogle Scholar
  47. 47.
    P. Aramwit, N. Bang, T. Srichana, Food Res. Int. 43, 1093–1097 (2010).  https://doi.org/10.1016/j.foodres.2010.01.022 CrossRefGoogle Scholar
  48. 48.
    M. Monagas, P.J. Martín-Álvarez, B. Bartolomé, C. Gómez-Cordovés, Eur. Food Res. Technol. 222, 702–709 (2006).  https://doi.org/10.1007/s00217-005-0037-7 CrossRefGoogle Scholar
  49. 49.
    V. Pereira, F. Albuquerque, J. Cacho, J.C. Marques, Molecules 18, 2997–3017 (2013).  https://doi.org/10.3390/molecules18032997 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Emmanuel Kwaw
    • 1
    • 2
  • William Tchabo
    • 1
  • Yongkun Ma
    • 1
  • Maurice Tibiru Apaliya
    • 1
  • Augustina Sackle Sackey
    • 2
  • Benjamin Kumah Mintah
    • 1
  • Muhammad Farooq
    • 1
  • Shengmei Ma
    • 1
  1. 1.Department of Food Science and Engineering, School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
  2. 2.Department of Hotel, Catering and Institutional Management, School of Applied Sciences and ArtsCape Coast Technical UniversityCape CoastGhana

Personalised recommendations